Vitrectomy associated optic neuropathy
Author:
Fund Project:

Middle-aged Science and Technology Innovation Talents Support Program of Shenyang(No.RC210267); Scientific Research Program of Shenyang Health Commission(No.2022103)

  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Over half a century has passed since the inception of vitrectomy, and the indications for its utilization in ophthalmology encompass the majority of vitreoretinal disorders. Technological advancements and equipment innovation have drastically reduced the surgical risk of vitrectomy, but some complications remain unavoidable. Occasionally, unexpected or unexplained visual impairments can manifest. Vitrectomy is associated with a high incidence of optic neuropathy, which can manifest weeks to months following the procedure and result in permanent visual impairment. An intraoperative optic nerve injury and a postoperative secondary injury comprise the causes. Intraocular pressure, dye toxicity, or mechanical damage can cause intraoperative optic nerve injury. Secondary injuries that occur after surgery include an increase in intraocular pressure, toxicity to silicone oil, oxidative stress, and other alterations in the microenvironment. This review will discuss the common causes, clinical manifestations, and related management of optic neuropathy connected to vitrectomy in order to attract the interest of ophthalmologists.

    Reference
    \〖1\〗 Bansal R, Dogra M, Chawla R, et al. Pars Plana vitrectomy in uveitis in the era of microincision vitreous surgery. Indian J Ophthalmol, 2020,68(9):1844-1851.
    \〖2\〗 Ramamurthy SR, Dave VP. Robotics in vitreo-retinal surgery. Semin Ophthalmol, 2022,37(7-8):795-800.
    \〖3\〗 Cheng D, Tao JW, Yu XT, et al. Characteristics of macular microvasculature before and after idiopathic macular hole surgery. Int J Ophthalmol, 2022,15(1):98-105.
    \〖4\〗 Shen Y, Ye X, Tao J, et al. Quantitative assessment of retinal microvascular remodeling in eyes that underwent idiopathic epiretinal membrane surgery. Front Cell Dev Biol, 2023,11:1164529.
    \〖5\〗 Pollreisz A, Desissaire S, Sedova A, et al. Early identification of retinal neuropathy in subclinical diabetic eyes by reduced birefringence of the peripapillary retinal nerve fiber layer. Invest Ophthalmol Vis Sci, 2021,62(4):24.
    \〖6\〗 Zeng Y, Cao D, Yu H, et al. Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy. Br J Ophthalmol, 2019,103(12):1747-1752.
    \〖7\〗 Pujari A, Bhaskaran K, Sharma P, et al. Optical coherence tomography angiography in neuro-ophthalmology: Current clinical role and future perspectives. Surv Ophthalmol, 2021,66(3):471-481.
    \〖8\〗 Hashimoto R, Sugiyama T,Maeno T. Comparison of optic nerve head blood flow autoregulation among quadrants induced by decreased ocular perfusion pressure during vitrectomy. Biomed Res Int, 2017,2017:6041590.
    \〖9\〗 Hashimoto R, Sugiyama T,Masahara H, et al. Impaired autoregulation of blood flow at the optic nerve head during vitrectomy in patients with type 2 diabetes. Am J Ophthalmol, 2017,181:125-133.
    \〖10\〗 Bonfiglio V, Ortisi E, Nebbioso M, et al. Optical coherence tomography angiography evaluation of peripapillary microvascular changes after rhegmatogenous retinal detachment repair. Retina, 2021,41(12):2540-2548.
    \〖11\〗 Mariotti C, Nicolai M, Longo A, et al. Peripapillary retinal nerve fiber thickness changes after vitrectomy for epiretinal membrane in eyes with and without vitreous detachment. Retina, 2017,37(12):2304-2309.
    \〖12\〗 Pendergast SD, Martin DF, Proia AD, et al. Removal of optic disc stalks during diabetic vitrectomy. Retina, 1995,15(1):25-28.
    \〖13\〗 Tao J, Yang J, Wu Y, et al. Internal limiting membrane peeling distorts the retinal layers and induces scotoma formation in the perifoveal temporal macula. Retina, 2022, 42(12):2276-2283.
    \〖14\〗 Wang XW, Long Y,Gu YS, et al. Outcomes of 4 surgical adjuvants used for internal limiting membrane peeling in macular hole surgery: a systematic review and network Meta-analysis. Int J Ophthalmol, 2020,13(3):481-487.
    \〖15\〗 Engelbrecht NE, Freeman J, Sternberg P, et al. Retinal pigment epithelial changes after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol, 2002,133(1):89-94.
    \〖16\〗 Haritoglou C, Gandorfer A, Gass CA, et al. Indocyanine green-assisted peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation. Am J Ophthalmol, 2002,134(6):836-841.
    \〖17\〗 Gass CA, Haritoglou C, Schaumberger M, et al. Functional outcome of macular hole surgery with and without indocyanine green-assisted peeling of the internal limiting membrane. Graefes Arch Clin Exp Ophthalmol, 2003, 241(9):716-720.
    \〖18\〗 Uemura A, Kanda S, Sakamoto Y, et al. Visual field defects after uneventful vitrectomy for epiretinal membrane with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol, 2003,136(2):252-257.
    \〖19\〗 Ando F,Yasui O, Hirose H, et al. Optic nerve atrophy after vitrectomy with indocyanine green-assisted internal limiting membrane peeling in diffuse diabetic macular edema. Adverse effect of ICG-assisted ILM peeling. Graefes Arch Clin Exp Ophthalmol, 2004, 242(12):995-999.
    \〖20\〗 Enaida H, Sakamoto T, Hisatomi T, et al. Morphological and functional damage of the retina caused by intravitreous indocyanine green in rat eyes. Graefes Arch Clin Exp Ophthalmol, 2002, 240(3):209-213.
    \〖21\〗 Sippy BD,Engelbrecht NE, Hubbard GB, et al. Indocyanine green effect on cultured human retinal pigment epithelial cells: implication for macular hole surgery. Am J Ophthalmol, 2001,132(3):433-435.
    \〖22\〗 Gandorfer A, Haritoglou C, Gandorfer A, et al. Retinal damage from indocyanine green in experimental macular surgery. Invest Ophthalmol Vis Sci, 2003,44(1):316-323.
    \〖23\〗 Ejstrup R, la Cour M, Heegaard S, et al. Toxicity profiles of subretinal indocyanine green, Brilliant Blue G, and triamcinolone acetonide: a comparative study. Graefes Arch Clin Exp Ophthalmol,2012, 250(5):669-677.
    \〖24\〗 蔡雅群, 张旭. 玻璃体视网膜手术后继发性青光眼的病因及治疗. 国际眼科杂志, 2020,20(5):806-809.
    \〖25\〗 Rossi T, Ripandelli G. Pars Plana vitrectomy and the risk of ocular hypertension and glaucoma: where are we? J Clin Med, 2020,9(12):3994.
    \〖26\〗 Chang S. LXII Edward Jackson lecture: open angle glaucoma after vitrectomy. Am J Ophthalmol, 2006,141(6):1033-1043.
    \〖27\〗 Kovacic H, Wolfs RCW, Kılıç E, et al. The effect of multiple vitrectomies and its indications on intraocular pressure. BMC Ophthalmol, 2019,19(1):175.
    \〖28\〗 Wang L, Liu J, Lu T. Clinical analysis of early and mid-late elevated intraocular pressure after silicone oil injection. Eye Sci, 2014, 29(2):85-89.
    \〖29\〗 Miller JB,Papakostas TD, Vavvas DG. Complications of emulsified silicone oil after retinal detachment repair. Semin Ophthalmol, 2014,29(5-6):312-318.
    \〖30\〗 Ni Y, Fang H, Zhang X, et al. Analysis of the causative factors related to earlier emulsification of silicone oil. Int J Ophthalmol, 2019,12(3):517-519.
    \〖31\〗Valentín-Bravo FJ, García-Onrubia L, Andrés-Iglesias C, et al. Complications associated with the use of silicone oil in vitreoretinal surgery: a systemic review and meta-analysis. Acta Ophthalmol, 2022,100(4):e864-e880.
    \〖32\〗 许菁, 王方. 硅油对视神经的毒性作用. 国际眼科杂志, 2019,19(5):787-790.
    \〖33\〗 Pichi F, Hay S, Abboud EB. Inner retinal toxicity due to silicone oil: a case series and review of the literature. Int Ophthalmol, 2020,40(9):2413-2422.
    \〖34\〗 Ma Y, Zhu XQ,Peng XY. Macular perfusion changes and ganglion cell complex loss in patients with silicone oil-related visual loss. Biomed Environ Sci, 2020,33(3):151-157.
    \〖35\〗 Grzybowski A, Pieczynski J, Ascaso FJ. Neuronal complications of intravitreal silicone oil: an updated review. Acta Ophthalmol, 2014,92(3):201-204.
    \〖36\〗 PastorJimeno JC, de la Rúa ER, Fernández Martínez I, et al. Lipophilic substances in intraocular silicone oil. Am J Ophthalmol, 2007,143(4):707-709.
    \〖37\〗 Pastor JC, Puente B,Telleria J, et al. Antisilicone antibodies in patients with silicone implants for retinal detachment surgery. Ophthalmic Res, 2001,33(2):87-90.
    \〖38\〗 Chen Y, LamIp Y, Zhou L, et al. What is the cause of toxicity of silicone oil? Materials(Basel), 2021,15(1):269.
    \〖39\〗 Romano MR, Ferrara M,Gatto C, et al. Safety of silicone oils as intraocular medical device: an in vitro cytotoxicity study. Exp Eye Res, 2020,194:108018.
    \〖40\〗 Zong Y, Gao QY, Hui YN. Vitreous function and intervention of it with vitrectomy and other modalities. Int J Ophthalmol, 2021,14(10):1610-1618.
    \〖41\〗 Ankamah E, Sebag J, Ng E, et al. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants(Basel), 2019, 9(1):7.
    \〖42\〗 Shestopalov VI, Spurlock M, Gramlich OW, et al. Immune responses in the glaucomatous retina: regulation and dynamics. Cells, 2021,10(8):1973.
    \〖43\〗 Feilchenfeld Z, Yücel YH, Gupta N. Oxidative injury to blood vessels and glia of the pre-laminar optic nerve head in human glaucoma. Exp Eye Res, 2008,87(5):409-414.
    \〖44\〗 Nakazawa T. Ocular Blood Flow and Influencing Factors for Glaucoma. Asia Pac J Ophthalmol(Phila), 2016, 5(1):38-44.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Lin Tiezhu, Shen Lijun. ,/et al.Vitrectomy associated optic neuropathy. Guoji Yanke Zazhi( Int Eye Sci) 2024;24(10):1620-1623

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
Publication History
  • Received:December 27,2023
  • Revised:August 19,2024
  • Online: September 14,2024