Ocular images for neurodegenerative disease analysis
Author:
Fund Project:

National Natural Science Foundation of China(No. 61671242, 81771478)

  • Article
  • | |
  • Metrics
  • |
  • Reference [57]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Retina and optic nerve both originate in brain, therefore they have the similar structure and functional characteristics of the brain. Exploring the performance of the central optic nervous disorder on the retina will be beneficial to uncovering the interaction mechanism between brain and eye. As an extension of the central nervous system, the retina contains ganglion cell, a special neuron, whose axon form the optic nerve and has access into the central nervous system. Therefore, the retina can be used as a mirror reflecting neurodegenerative diseases structurally and functionally. With the development of imaging technology, optical coherence tomography(angiography)has become the mainstream tool for ophthalmological clinical diagnosis due to its easy operation and low cost. In recent years, discovering biomarkers of neurodegenerative diseases, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis and so on, in the retinal optical coherence tomography images has gradually become an emerging research direction. In this review, we summarized the research progress of neurodegenerative diseases analysis based on the retinal images in the past decade, and provide a prospect to inspire further research as far as possible.

    Reference
    1 DeBuc DC, Somfai GM, Szatmáry G, et al. Seeing the brain through the eye: what is next for neuroimaging and neurology applications. OCT and Imaging in Central Nervous System Diseases.Switzerland: Springer International Publishing 2020:55-82
    2 Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991; 254(5035):1178-1181
    3 Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64:1-55
    4 Rasmussen R, Matsumoto A, Dahlstrup Sietam M, et al. A segregated cortical stream for retinal direction selectivity. Nat Commun 2020; 11(1):831
    5 Saidha S, Al-Louzi O, Ratchford JN, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol 2015; 78(5):801-813
    6 Ratchford JN, Saidha S, Sotirchos ES, et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 2013; 80(1):47-54
    7 Talman LS, Bisker ER, Sackel DJ, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67(6):749-760
    8 Saidha S, Sotirchos ES, Ibrahim MA, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11(11):963-972
    9 Snyder PJ, Johnson LN, Lim YY, et al. Nonvascular retinal imaging markers of preclinical Alzheimer's disease. Alzheimers Dement (Amst)2016; 4:169-178
    10 Kesler A, Vakhapova V, Korczyn AD, et al. Retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Clin Neurol Neurosurg 2011; 113(7):523-526
    11 Garcia-Martin E, Bambo MP, Marques ML, et al. Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer's disease. Acta Ophthalmol 2016; 94(6):e454-e459
    12 Akbari M, Abdi P, Fard MA, et al. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 2016; 36(2):141-146
    13 Yu JG, Feng YF, Xiang Y, et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One 2014; 9(1):e85718
    14 Balk LJ, Petzold A, Oberwahrenbrock T, et al. Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. Am J Ophthalmol 2014; 158(4):845
    15 Chrysou A, Jansonius NM, van Laar T. Retinal layers in Parkinson's disease: a meta-analysis of spectral-domain optical coherence tomography studies. Parkinsonism Relat Disord 2019; 64:40-49
    16 Schneider M, Müller HP, Lauda F, et al. Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm (Vienna)2014; 121(1):41-47
    17 Satue M, Obis J, Alarcia R, et al. Retinal and choroidal changes in patients with Parkinson's disease detected by swept-source optical coherence tomography. Curr Eye Res 2018; 43(1):109-115
    18 Mendoza-Santiesteban CE, Gabilondo I, Palma JA, et al. The retina in multiple system atrophy: systematic review and meta-analysis. Front Neurol 2017; 8:206
    19 Rojas P, de Hoz R, Ramírez A, et al. Changes in retinal OCT and their correlations with neurological disability in early ALS patients, a follow-up study. Brain Sci 2019; 9(12):337
    20 Kersten HM, Danesh-Meyer HV, Kilfoyle DH, et al. Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression. J Neurol 2015; 262(11):2457-2465
    21 Andrade C, Beato J, Monteiro A, et al. Spectral-domain optical coherence tomography as a potential biomarker in Huntington's disease. Mov Disord 2016; 31(3):377-383
    22 Gatto E, Parisi V, Persi G, et al. Optical coherence tomography(OCT)study in Argentinean Huntington's disease patients. Int J Neurosci 2018; 128(12):1157-1162
    23 Spund B, Ding Y, Liu T, et al. Remodeling of the fovea in parkinson disease. J Neural Transm (Vienna)2013; 120(5):745-753
    24 Miri S, Shrier EM, Glazman S, et al. The avascular zone and neuronal remodeling of the fovea in Parkinson disease. Ann Clin Transl Neurol 2015; 2(2):196-201
    25 Appaji A, Nagendra B, Chako DM, et al. Retinal vascular abnormalities in schizophrenia and bipolar disorder: a window to the brain. Bipolar Disord 2019; 21(7):634-641
    26 London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 2013; 9(1):44-53
    27 Wang XG, Jia YL, Spain R, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 2014; 98(10):1368-1373
    28 Spain RI, Liu L, Zhang XB, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol 2018; 102(4):520-524
    29 Lanzillo R, Cennamo G, Criscuolo C, et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler 2018; 24(13):1706-1714
    30 Scalise AA, Kakogiannos N, Zanardi F, et al. The blood-brain and gut-vascular barriers: from the perspective of claudins. Tissue Barriers 2021; 9(3):1926190
    31 Bulut M, Kurtulu瘙塂 F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia. Br J Ophthalmol 2018; 102(2):233-237
    32 Wang L, Murphy O, Caldito NG, et al. Emerging applications of optical coherence tomography angiography(OCTA)in neurological research. Eye Vis (Lond)2018; 5:11
    33 Jiang H, Wei YT, Shi YY, et al. Altered macular microvasculature in mild cognitive impairment and alzheimer disease. J Neuroophthalmol 2018; 38(3):292-298
    34 Criscuolo C, Cennamo G, Montorio D, et al. Assessment of retinal vascular network in amnestic mild cognitive impairment by optical coherence tomography angiography. PLoS One 2020; 15(6):e0233975
    35 Ling JW, Yin X, Lu QY, et al. Optical coherence tomography angiography of optic disc perfusion in non-arteritic anterior ischemic optic neuropathy. Int J Ophthalmol 2017; 10(9):1402-1406
    36 Song Y, Min JY, Mao L, et al. Microvasculature dropout detected by the optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. Lasers Surg Med 2018; 50(3):194-201
    37 Fard MA, Sahraiyan A, Jalili J, et al. Optical coherence tomography angiography in papilledema compared with pseudopapilledema. Invest Ophthalmol Vis Sci 2019; 60(1):168-175
    38 Kwapong WR, Ye H, Peng CL, et al. Retinal microvascular impairment in the early stages of Parkinson's disease. Invest Ophthalmol Vis Sci 2018; 59(10):4115-4122
    39 Mrugacz M, Bryl A, Zorena K. Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J Clin Med 2021; 10(3):458
    40 Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy(EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives.Trends Endocrinol Metab 2014; 25(1):23-33
    41 Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res 2015; 48:160-180
    42 Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2016; 51:156-186
    43 Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 2018; 61(9):1902-1912
    44 Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 2018; 135(3):311-336
    45 Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med 2012; 366(13):1227-1239
    46 Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2017; 255(1):1-6
    47 Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 2013; 33(11):1685-1695
    48 Metea MR, Newman EA. Signalling within the neurovascular unit in themammalian Retina. Exp Physiol 2007; 92(4):635-640
    49 Hasegawa N, Nozaki M, Takase N, et al. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Invest Ophthalmol Vis Sci 2016; 57(9):348-355
    50 Simó R, Ciudin A, Simó-Servat O, et al. Cognitive impairment and dementia: a new emerging complication of type 2 diabetes-The diabetologist's perspective. Acta Diabetol 2017; 54(5):417-424
    51 Sundstrom JM, Hernández C, Weber SR, et al. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci 2018; 59(6):2264-2274
    52 Nelis P, Kleffner I, Burg MC, et al. OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep 2018; 8(1):8148
    53 Wylęga■a A. Principles of OCTA and applications in clinical neurology. Curr Neurol Neurosci Rep 2018; 18(12):96
    54 Asanad S, Wu J, Nassisi M, et al. Optical coherence tomography-angiography in wolfram syndrome: a mitochondrial etiology in disease pathophysiology. Can J Ophthalmol 2019; 54(1):e27-e30
    55 Samara WA, Say EA, Khoo CT, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina 2015; 35(11):2188-2195
    56 O'Bryhim BE, Apte RS, Kung N, et al. Association of preclinical alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol 2018; 136(11):1242-1248
    57 Ma YH, Hao HY, Xie JY, et al. ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans Med Imaging 2021; 40(3):928-939
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Ao-Wang Qiu, Qiu-Zhuo Xu, Chen-Feng Gu,/et al.Ocular images for neurodegenerative disease analysis. Guoji Yanke Zazhi( Int Eye Sci) 2022;22(6):941-945

Copy
Share
Article Metrics
  • Abstract:452
  • PDF: 2268
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:August 24,2021
  • Revised:April 28,2022
  • Online: May 30,2022