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Abstract

e AIM: To build a functional generalized estimating
equation (GEE) model to detect glaucomatous visual field
progression and compare the performance of the proposed
method with that of commonly employed algorithms.

o METHODS: Totally 716 eyes of 716 patients with primary
open angle glaucoma (POAG) with at least 5 reliable 24-2
test results and 2y of follow-up were selected. The functional
GEE model was used to detect perimetric progression in
the training dataset (501 eyes). In the testing dataset (215
eyes), progression was evaluated the functional GEE model,
mean deviation (MD) and visual field index (VFI) rates of
change, Advanced Glaucoma Intervention Study (AGIS) and
Collaborative Initial Glaucoma Treatment Study (CIGTS)
scores, and pointwise linear regression (PLR).

e RESULTS: The proposed method showed the highest
proportion of eyes detected as progression (54.4%),
followed by the VFI rate (34.4%), PLR (23.3%), and MD
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rate (21.4%). The CIGTS and AGIS scores had a lower
proportion of eyes detected as progression (7.9% and 5.1%,
respectively). The time to detection of progression was
significantly shorter for the proposed method than that of
other algorithms (adjusted P<0.019). The VFI rate displayed
moderate pairwise agreement with the proposed method
(k=0.47).

e CONCLUSION: The functional GEE model shows
the highest proportion of eyes detected as perimetric
progression and the shortest time to detect perimetric
progression in patients with POAG.

e KEYWORDS: functional generalized estimating
equation model; primary open angle glaucoma; perimetric
progression
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INTRODUCTION

laucoma is a progressive optic neuropathy characterized
G by glaucomatous optic disc cupping, retinal nerve fiber
layer thinning, and visual field loss' . Standard automated
perimetry remains the preferred approach for measuring
disease progression in patients with glaucoma®"'. Therefore,
detecting visual field progression is essential for the timely
application of therapeutic intervention to preserve vision in
patients with glaucoma'®.
Notably, the observed changes must exceed the expected
visual field test-retest variability to detect true perimetric
progression”*. Larger intraocular pressure fluctuation,
intervening cataract and glaucoma surgery, worse baseline
mean deviation (MD), faster visual field decay rate, and higher
false positive and false negative rates are associated with
increased visual field fluctuation®’.
Numerous approaches have been used to detect visual field
progression!"”'?. Event or trend-based methods including
glaucoma progression analysis (GPA), rates of MD change,
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and rates of visual field index (VFI) change, pointwise
linear regression (PLR) analysis, the Advanced Glaucoma
Intervention Study (AGIS) score, and Collaborative Initial
Glaucoma Treatment Study (CIGTS) score have been
suggested to help the clinician to objectively evaluate visual
field progression. More recently, deep learning models have
been proposed to identify visual field worsening and predict

001314 yousefi er al'™

future visual fields reported that an
automated machine learning system using archetypal analysis
identified visual field loss patterns associated with rapid
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progression in patients with glaucoma. Kim et al'
able to enhance the detection of visual field progression with
a hybrid approach combining archetypal analysis and fuzzy
c-means.

Glaucomatous visual field progression is often challenging to
detect due to significant test-retest variability and the absence
of a universally accepted gold standard for progression
assessment. Current methods, such as MD rate and VFI rate,
provide global measures of visual field loss but may lack
sensitivity to focal defects'”. Similarly, pointwise regression
methods, while capable of detecting localized changes,
are prone to false positives due to intrinsic measurement
variability!"”. The need for a more reliable approach that
integrates spatial and temporal information to enhance
sensitivity and specificity remains unmet.

The generalized estimating equation (GEE) model has been
applied to estimate diagnostic measures in medical research.
Martus et al'” extended the GEE approach to investigate which
diagnostic tests should be used as supplementary to each other
in eyes with glaucoma. Musch et al””, using a GEE model,
found that surgical treatment was more beneficial for patients
with advanced visual field loss, while medical treatment was

more effective for patients with diabetes. Abe et al™"

, using a
GEE model, found that optical coherence tomography is more
effective in detecting glaucoma progression in early stages,
while standard automated perimetry is better for advanced
stages, with the results influenced by disease severity and
number of follow-up visits. Stagg et al*”, using a GEE model,
found that Black individuals had greater visual field variability
than White individuals, delaying glaucoma progression detection.
While previous studies have applied GEE to ophthalmic
research, they have primarily utilized scalar covariates,
overlooking the spatially correlated structure of visual field
data. The proposed functional GEE model extends this
approach by incorporating functional covariates, allowing for
a more comprehensive assessment of visual field changes over
time. This novel methodology enables better differentiation
between true disease progression and measurement variability,
potentially reducing false-positive rates and improving early
detection.

This study aims to develop and validate a functional GEE
model for detecting glaucomatous visual field progression.
Unlike conventional methods that analyze individual test
points or global indices separately, the proposed model
accounts for both spatial dependencies and temporal changes
in a unified framework. By comparing its performance to
widely used progression detection algorithms—including MD
rate, VFI rate, PLR, AGIS, and CIGTS score—we evaluate its
potential for improving diagnostic accuracy and reducing time
to progression detection in clinical practice.

PARTICIPANTS AND METHODS

Ethical Approval This retrospective study was conducted
following the principles of the Declaration of Helsinki, and the
study protocol was approved by the Institutional Review Board
of Pusan National University Hospital (approval number:
2306-033-128). The institutional review board waived the
requirement for patient informed consent due to the study’s
retrospective design.

Study Design and Participants Selection The 6385 visual
fields from 716 eyes of 716 patients with primary open
angle glaucoma (POAG) who visited glaucoma clinics at
Pusan National University Hospital between June 2004 and
January 2021 were included in this retrospective, longitudinal,
observational study.

The inclusion criteria were age >18y, diagnosis of POAG
with five or more visual fields, and a minimum follow-up
of 2y. The exclusion criteria included secondary glaucoma
including steroid induced glaucoma, pigmentary glaucoma,
pseudoexfoliation glaucoma, uveitic glaucoma, neovascular
glaucoma, and angle recession glaucoma, uveitis, diabetic
retinopathy, age-related macular degeneration, corneal opacity,
ocular trauma, and nonglaucomatous optic neuropathies
that might affect the visual field. The diagnosis of POAG
was based on the following eligibility criteria: 1) presence
of glaucomatous optic nerve appearance, corresponding
and typical visual field loss; 2) open angles on gonioscopy.
Glaucomatous optic neuropathy was defined as having more
than a 0.2 cup-to-disc ratio asymmetry between the 2 eyes,
neuroretinal rim thinning, notching, or characteristic retinal
nerve fiber layer defects indicative of glaucoma. An abnormal
visual field was defined as P<0.05 for the pattern standard
deviation or a glaucoma hemifield test result outside normal
limits or a cluster of >3 points in the pattern deviation plot in a
single hemifield (superior/inferior) with P<0.05, one of which
must have been P<0.01. One eye per individual was randomly
selected when both eyes satisfied the inclusion criteria.

The 716 eyes of 716 participants were randomly split into
training and test datasets at a ratio of 7:3. There was no patient
overlap between the training and test datasets. Totally 501
eyes of 501 patients were included in the method-development
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training dataset for the functional GEE model to detect
perimetric progression. The 215 eyes of 215 patients were
included in the test dataset to evaluate and compare perimetric
progression using commonly employed methods.

Baseline Measurements All patients underwent thorough
ophthalmologic examination, including best corrected
visual acuity, slit-lamp examination, intraocular pressure
measurement using Goldmann applanation tonometry,
gonioscopy, dilated fundus examination with binocular indirect
ophthalmoscopy and slit-lamp biomicroscopy with fundus
lens, biometry using the IOL Master (Carl Zeiss Meditec,
Dublin, CA, USA), central corneal thickness using ultrasonic
pachymetry (Pachmate; DGH Technology, Exton, PA, USA),
and keratometry using an auto-kerato-refractometer (ARK-
510A; NIDEK, Hiroshi, Japan). Snellen visual acuities were
converted to a scale of the logMAR for comparison.

Visual Field Test Automated perimetry was performed
using a Humphrey Visual Field Analyzer 750i (Carl Zeiss
Meditec Inc.) and a 24-2 or 30-2 Swedish interactive threshold
algorithm. Among the 54 test points of the 24-2 test pattern,
two physiological scotoma points were excluded, and the
remaining 52 test points were used. The 30-2 test pattern
was converted into a 24-2 test pattern using the overlapped
test points. Reliable visual field tests were defined as a false
positive rate <20%, a false negative rate <20%, and fixation
loss <33%.

Established Methods for Detecting Visual Field Progression
A reference standard for visual field progression was defined
as the clinician’s assessment of perimetric progression. Three
glaucoma specialists (Kim H, Moon S, and Lee J) who were
blind to the results of all computational methods clinically
assessed each eye. First, pattern deviation (PD) plots were
divided into six peripheral (superior and inferior nasal steps
and superior and inferior Bjerrum areas) and two paracentral
regions™. In each peripheral region, a visual field defect
is defined as a cluster of at least three adjacent test points
corresponding to retinal nerve fiber layer defect with -5 dB or
worse for each point. However, a visual field defect is defined
as at least two adjacent points with a sum of -15 dB or more
for the paracentral region.

Progression was defined in three ways: 1) the presence of a
visual field defect in one or more regions in the last visual
field, reproduced on a prior visual field but not observed in
the baseline visual field; 2) when a visual field defect present
in one or more regions on the last two visual fields is worse
than that observed in the first two tests (average PD value for
all test points in the region worsened by -3 dB or more); or
3) when the average MD values of the final two visual fields
was worse by -3 dB or more than the average of the first two
visual fields. If the last visual field in the series showed no
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visual field defects in any regions, the status was defined as no
progression. Two glaucoma specialists (Kim H and Moon S)
reviewed each visual field series following above mentioned
set of criteria. A third glaucoma specialist (Lee J) reviewed all
cases of disagreement to reach unanimous decisions.

The AGIS score was calculated for each visual field, as
described in the AGIS trial'"". This score uses the total
deviation plot and ranged from 0 to 20, and the scores for each
visual field were compared with the baseline scores. An AGIS
score increment of at least four points, sustained for three
consecutive visual fields, was classified as progression.

The CIGTS score calculation was previously described in the
CIGTS trial"". This score uses the total deviation probability
map and ranged from 0 to 20, and an increment of three or
more test points, sustained for three consecutive visual field,
was classified as progression.

The MD and VFI slopes were calculated using a simple linear
regression of the MD and VFI values for the visual fields.
For MD and VFI, visual field progression was defined as a
negative slope with a P<0.05"".

For PLR, linear regression was performed for the total
deviation values (TDVs) of each of the 52 visual field points.
Visual field progression was defined as the presence of any three
points with a negative slope <-1 dB/year with a P<0.01"",
Statistical Analysis Spatial statistical models mainly focus
on random objects measured at grid points (specified by the
horizontal and vertical axes). Following Cressie and Wikle™",
spatial data points can be characterized by spatial associations
between different locations. Similar to time-series data, spatial
data exhibit heteroscedasticity and spatial autocorrelation
owing to spatial fluctuations; therefore, the observed data
cannot be assumed to be extracted from an independent
and homogenecous distribution. Thus, a special approach to
analyzing spatial data is required. Let us denote 5, € S as the
grid points associated with the spatial location, where / denotes
the /" pixel associated with the location vector S, and S denotes
the entire domain set, that is, S={s,, s,,..., s¢}. A set of spatial
data {X; (5)), X (52),..., X ; (s5)} is observed for the i" subject
at the j” visual field examination.

The smoothing process is a statistical method that gives rise
to borrowing strength and reinforces the signal by removing
noise. This process is used in various fields, including
statistical analysis, data analysis, signal processing, image
processing, and spatial analysis. We adopted the weighted
average method, known as Toba’s law, which is widely used
in spatial smoothing processes. The primary idea of this
smoothing method is to give more weight to observations with
a close location and visit time from the given location and visit
time, while giving a small weight to observations with a distant
location and time within the individual subject. Specifically,
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the smoothed observation for the i” subject at the location S,

and time pointj is given by

Xij(sl) = Wi*jkm(sl) * Xik (Sm)

SmENs; (h) keN¢(T)
where

Wijkem (S1)

ZsmeNsl(h) ZkENt(T) Wijkm (Sl)

Wi*jkm (sp) =

(s)=172N, ()| if
(s)=0 otherwise, for

Wit (SO=1/2 N, (OI(Ns (D)|-1) if k=j, m#L, w,
k#j, m=1, wy,, (s))=1/2 if k=j, m=l, and w;,

ijkm

ijkm

which Ny (1) denotes a set of spatial locations with the spatial
lag within some tolerance of 4, N, (1) denotes a set of time
points with the time lag within some tolerance of 1, and [N (*)|
denotes the number of elements in a set N (-). Weights can be
set using more flexible kernel functions and various distance
metrics; however, we used moving average-type weights in
this analysis.

We regarded the smoothed spatial data as functional data and
applied a statistical model associated with functional data
analysis to the pre-processed data. Functional data refers to
data that can be represented as functions over time, space, or
other continuous variables. In the functional data analysis,
each participant was analyzed as an entire function rather
than as an independent value. This allows the examination of
characteristics such as patterns in the data, trends, derivatives,
and integrals. Liang and Zeger™ introduced the GEE
method to deal with correlated data: the correlation among
responses. This has several advantages from a statistical
perspective. As mentioned above, the GEE analyzes repeated
measurements or clustered data, in which observations are
dependent. The GEE is flexible for distributional assumptions
and conditions of residuals in that it does not require the
assumption of independence and deals with various types
of dependent variables (binary, count, and continuous) and
the family of generalized linear models. In addition, GEE
provides robust standard error estimates. Specifically, the
corresponding standard error estimates remain unbiased even
if the model is misspecified, that is, the correlation structure is
incorrectly specified. Furthermore, the GEE specifies different
correlation structures such as independence, exchangeable,
and AR (1), making it possible to select the most appropriate
correlation structure based on data characteristics. Finally, the
estimated regression coefficients in the GEE model can be
interpreted similarly to those in the generalized linear models.
Therefore, the results are relatively straightforward and easy to
understand. For the set of functional data {(y;, X; (s,), X;;(s,),. ..,
X; (S} et n 1.1 We considered the functional GEE model
as follows:

9 (E0) = 9(uy) = o + [ BOX;)ds,
s
Where g (*) is the link function, £, is the intercept, and f§ (*) is a

functional coefficient.

Assuming the logit link
9@ =1og (1)

because of y; € {0, 1} for all i and j, where the value of zero
means nonprogressing and the value of one means progressing,
the empirical risk with respect to the negative likelihood
function is given by

n Ti
R(a o BO) = =1 . [yij {ﬁo +f ﬁ(s)xij(sms} ~log {1+ fo*) B(sm,.@m}].

i=1j=1
By differentiating the given expression, we obtain the set of
GEEs given by

3R o, B)) = ivf VG- =0
where -
wi; =Pr(y;; = 1), 7 = (v ---’Ym-)Ta i = (pins ---,ﬂm)T,
D; = diag[p;1 (1 — pn), iz (X = piz)s o ptir (1 — i) 1%,

X ={x;;(sD}, 1/2

— 1/2
Jj=1,...T; 1=1,..,K, Vl = Bi

i bl

R;(a)B
B; = diag[#u(l — Wi, i (1 — ), ---uuiTi(l - MiTi)]a
and R, (o) is a working correlation matrix with Corr (y;, y;)=a
if /7" and Corr (v, y;)=1 if j=7".
Therefore, an exchangeable correlation structure was used,
because it provides good results under various conditions.
We used the TDVs as functional covariates and the number
of pixels K was set at K=52. The coefficients and estimated
probabilities were calculated by minimizing the empirical risk.
Evaluation Using estimated coefficients, the estimated

probability f;j is given by

exp{fo + [; B()Xy(s)ds}
Hij = - - .
St exp {[30 +J5 ﬁ(s)Xl-j(s)ds}

For each visual field examination of all participants, the
optimal cut-off value 6 of the estimated probabilities was
selected using the receiver operating characteristic (ROC)
curve. The optimal cut-off value was selected through

Youden’s J statistics,

8§ = argmax J(c) = argmax sensitivity(c) + specificity(c) — 1,
c c

X Iy > ¢y =1)
LYl (= 1)

sensitivity(c) =

?=1ZJT~i11(ﬁij <c, y;=0)
i=1 Z]T-il I(y;; = 0)

specificity(c) =
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Table 1 Demographic and ophthalmological characteristics of the entire subjects

Characteristics Total subjects Train dataset Test dataset P
Number of eyes/patients 716/716 501/501 215/215

Visual field: MD>-6 dB 441 303 138 0.644°
Visual field: -6>MD>-12 dB 208 150 58

Visual field: MD<-12 dB 67 48 19

Age (y) 61.81+14.98 61.63+14.75 62.22+15.53 0.633°
Eye, right/left 367/349 254/247 113/102 0.648°
Sex, male/female 358/358 260/241 98/117 0.121°
Intraocular pressure (mm Hg) 15.91+3.79 15.87+3.66 16.00+4.06 0.668"
Axial length (mm) 24.90+1.86 24.97+1.86 24.73+1.85 0.179°
Spherical equivalent (diopter) -2.5743.56 -2.5843.45 -2.53+3.82 0.872°
Central corneal thickness (um) 557.73+272.62 553.56+227.93 567.38+355.55 0.551°
BCVA (logMAR) 0.11+0.16 0.11+0.17 0.10+0.14 0.803"
MD (dB) -5.60+3.88 -5.67+3.92 -5.46+3.80 0.513°
VFI (%) 88.38+11.46 88.30+11.53 88.55+11.30 0.786°
PSD (dB) 5.55+3.98 5.55+3.98 5.56+3.99 0.974°
Number of visual fields per eye 8.92+3.91 9.05+3.99 8.62+3.74 0.181°
Follow-up (y) 5.52+3.16 5.63+3.20 5.24+3.06 0.131°

BCVA: Best-corrected visual acuity; logMAR: Logarithm of the minimum angle of resolution; MD: Mean deviation; PSD: Pattern standard

deviation; VFI: Visual field index. *Chi-squared test; PStudent t-test.

The area under the curve (AUC) was calculated to evaluate the
sensitivity and specificity using the optimal cut-off value, 3.
Accuracy was also calculated to compare our proposed method
with existing methods.
AUC=integral of ROC curve from (0,0) to (1,1)
TP+ TN

TP+ FN+TN + FP’
Where TP is true positive, 7N is true negative, FP is false

Accuracy =

positive, and FN is false negative.

The proportion of the visual field series identified as
progressive was defined as the percentage of progressing eyes
determined by each method. Eyes meeting the progression
criteria according to a given algorithm at any follow-up visit
were defined as progression®. There is no gold standard to
define visual field progression in patients with glaucoma;
therefore, the proportion of series detected as progression is
used as a surrogate measure of sensitivity™®,

Time to the first detection of progression was assessed using
Kaplan-Meier curves, differences across methods were
compared using the log-rank test, and multiple comparisons
were adjusted using the Bonferroni test. Furthermore, Cohen’s
kappa statistic was used to measure a pairwise agreement
between the methods"™®.

RESULTS

The meantstandard deviation age of the patients at baseline
visit, number of visual fields per eye, and follow-up period
were 61.81£14.98y, 8.92+3.91 and 5.5243.16y, respectively
(Table 1).

The accuracy (mean+standard deviation) of the functional

GEE model in comparison to the clinician’s assessment of
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perimetric progression was 0.750+0.031 [confidence interval
(CI)=0.689, 0.811]. However, the accuracy of conventional
methods in comparison to the clinician’s assessment of
perimetric progression were 0.507+0.026 (CI=0.456, 0.559),
0.592+0.027 (CI=0.539, 0.644), 0.527+0.027 (CI=0.474,
0.580), 0.410+0.026 (CI=0.359, 0.462), 0.436+0.028
(CI=0.382, 0.490) for MD, VFI, PLR, AGIS, and CIGTS
criteria, respectively (Table 2).

Table 3 shows that the functional GEE model had the highest
proportion of eyes detected as progression, followed by the
VFI rate, PLR, and MD rate, which had a moderate proportion.
However, the CIGTS and AGIS scores had a considerably
lower proportion of series detected as progression. The
proportion of eyes detected as progression was 54.4%, 34.4%,
23.3%, 21.4%, 7.9%, and 5.1% for the functional GEE
model, VFI rate, PLR, MD rate, CIGTS, and AGIS scores,
respectively.

Figure 1 showed the cumulative proportion of progressing
eyes according to each technique. The time to detect
progression was significantly shorter for the functional GEE
model compared with that for every other algorithm (adjusted
P<0.019). However, no other pairwise comparisons were
statistically significant. The median (interquartile range) time
to detect progression was 905 (479-1435)d, 1500 (919-2018)d,
1542 (965-2019)d, 1617 (1236-2198)d, 1694 (955-2444)d, and
2198 (1351-2468)d for the functional GEE model, VFI rates,
MD rates, CIGTS, PLR, and AGIS, respectively.

Table 4 presents the pairwise agreement between the methods.
The VFI rate displayed moderate pairwise agreement with
the functional GEE model (k=0.47), while the MD rate and
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Table 2 Measures of the accuracy of the different methods

Category (AUC) Accuracy (meanSD) Confidence interval
Functional GEE model (0.803) 0.750+0.031 0.689, 0.811
MD rate 0.507+0.026 0.456, 0.559
VFl rate 0.592+0.027 0.539, 0.644
PLR 0.527+0.027 0.474, 0.580
AGIS 0.410+0.026 0.359, 0.462
CIGTS 0.436+0.028 0.382, 0.490

AGIS: Advanced Glaucoma Intervention Study; AUC: Area under the receiver operating characteristic curve;

CIGTS: Collaborative Initial Glaucoma Treatment Study; GEE: Generalized estimating equations; MD: Mean

deviation; PLR: Pointwise linear regression; SD: Standard deviation; VFI: Visual field index.

Table 3 Measures of diagnostic properties of the different methods

Status Functional GEE MD rate VFI rate PLR AGIS CIGTS
Progressing 117 46 74 50 11 17
Non-progressing 98 169 141 165 204 198
Detection rate (%) 54.4 21.4 34.4 23.3 5.1 7.9

AGIS: Advanced Glaucoma Intervention Study; CIGTS: Collaborative Initial Glaucoma Treatment Study; GEE: Generalized estimating equations;

MD: Mean deviation; PLR: Pointwise linear regression; VFI: Visual field index.

Table 4 Kappa values of the different methods to detect perimetric progression in the test dataset

Iltems Functional GEE MD rate VFI| rate PLR AGIS CIGTS
Reference standard 0.592 0.202 0.424 0.197 0.068 0.106
Functional GEE NA 0.283 0.47 0.281 0.086 0.117
MD rate NA NA 0.55 0.517 0.292 0.3

VFl rate NA NA NA 0.42 0.161 0.18
PLR NA NA NA NA 0.266 0.306
AGIS NA NA NA NA NA 0.543

AGIS: Advanced Glaucoma Intervention Study; CIGTS: Collaborative Initial Glaucoma Treatment Study; GEE: Generalized estimating equations;

MD: Mean deviation; PLR: Pointwise linear regression; VFI: Visual field index.

=+ Functional GEE model =+ VFlrate =~ AGIS
=+ CIGTS

=+ MD rate

=+ PLR

0.75

05

0.25

Cumulative proportion of progressing eyes

0 5 10 15
Time (y)

Figure 1 The cumulative proportion of progressing eyes according
to each method in the test dataset AGIS: Advanced Glaucoma
Intervention Study; CIGTS: Collaborative Initial Glaucoma Treatment
Study; GEE: Generalized estimating equations; MD: Mean deviation;

PLR: Pointwise linear regression; VFI: Visual field index.

PLR exhibited fair agreement with the functional GEE model
(xk=0.283 and «=0.281, respectively).

Figure 2 showed three representative cases with visual
field baseline MD>-6 dB, in which the functional GEE
model detected perimetric progression earlier than other
algorithms. In the visual field of November 26, 2019 when the

functional GEE model detected perimetric progression, TDV
deterioration was apparent in the superior paracentral and nasal
step area. These initial changes progressed to obvious superior
and inferior visual field defects in the later visual field (Figure
2A). In the visual field of June 30, 2016, when the functional
GEE model detected perimetric progression, the deterioration
of TDV was apparent in the nasal step area. This initial change
became obvious in the later visual field (Figure 2B). In the
visual field of September 26, 2017, when the functional GEE
model detected perimetric progression, the deterioration of
TDV was apparent in the superior paracentral and nasal step
area. This initial change became obvious in the later visual
field (Figure 2C).

Figure 3 showed three representative cases with visual field
baseline MD<-6 dB, in which the functional GEE model
detected perimetric progression earlier than other algorithms.
In the visual field of October 12, 2018, when the functional
GEE model detected perimetric progression, the deterioration
of TDV was apparent in the inferior Bjerrum’s area. This initial
change progressed to an obvious inferior arcuate scotoma in
the later visual field (Figure 3A). In the visual field of August
7, 2014, when the functional GEE model detected perimetric
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Figure 2 Representative cases with early glaucoma with baseline MD2-6 dB, in which the functional GEE model detected perimetric
progression earlier than other algorithms A: In a 36-year-old female patient, the functional GEE model detected perimetric progression earlier
than the MD rate, VFI rate, and PLR analysis; B: In a 22-year-old male patient, the functional GEE model detected perimetric progression earlier
than PLR analysis and VFI rate; C: In a 32-year-old female patient, the functional GEE model detected perimetric progression earlier than the VFI
rate, MD rate, and PLR analysis. GEE: Generalized estimating equations; MD: Mean deviation; PLR: Pointwise linear regression; VFI: Visual field index.
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Figure 3 Representative cases with moderate to advanced glaucoma with baseline MD<-6 dB, in which the functional GEE model detected
perimetric progression earlier than other algorithms A: In a 49-year-old male patient, the functional GEE model detected perimetric
progression earlier than the MD and VFI rate; B: In a 36-year-old female patient, the functional GEE model detected perimetric progression
earlier than the VFI rate, MD rate, and PLR analysis; C: In a 33-year-old male patient, the functional GEE model detected perimetric progression
earlier than the VFI rate, MD rate, and PLR analysis. GEE: Generalized estimating equations; MD: Mean deviation; PLR: Pointwise linear

regression; VFI: Visual field index.

progression, the deterioration of TDV was apparent in the
superior and inferior paracentral area. These initial changes
progressed to an obvious ring scotoma in the later visual
field (Figure 3B). In the visual field of July 3, 2012, when the
functional GEE model detected perimetric progression, the
deterioration of TDV was apparent in the superior paracentral
area. This initial change became an obvious superior altitudinal
defect in the later visual field (Figure 3C).

DISCUSSION

We developed a functional GEE model to detect perimetric
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progression. Compared with existing methods, the functional
GEE model had the highest proportion of eyes detected as
progression and the earliest detected progression in patients
with POAG. The agreement with existing approaches ranged
from fair to moderate, except for the AGIS and CIGTS. AGIS
and CIGTS had the lowest proportion of eyes detected as
progression.

The clinician evaluation graded by a glaucoma specialist based
on clearly defined criteria was used as the reference standard
to evaluate the accuracy of our functional GEE model””’. The



Int J Ophthalmol, Vol. 19, No. 2, Feb. 18, 2026 www.ijo.cn
Tel: 8629-82245172  8629-82210956  Email: ijopress@163.com

accuracy of the functional GEE model (0.750) outperformed
that of the MD rate (0.507), VFI rate (0.592), PLR (0.527),
CIGTS (0.436), and AGIS (0.410).

Detecting perimetric progression in patients with glaucoma
is challenging. Notably, several methods exist for monitoring
changes in visual fields; however, no single approach has been
universally accepted as the gold standard. Furthermore, using
subjective clinician evaluation as a reference standard may
underestimate or overestimate the performance of progression
detection methods™. However, clinician assessment has been
widely used as a reference standard to evaluate progression
algorithms in previous studies and we used clearly defined
criteria for clinician assessment”**”),

MD and VFI are global indices that summarize mean damage
across the entire visual field. However, the MD rate may be
insensitive to focal components of visual field deterioration”.
Furthermore, the VFI provides no spatial information about the
visual field and may be insensitive to regional changes or focal
components of damage in the same manner”®. VFI may be less
able to detect early glaucomatous change due to the ceiling
effect derived from its reliance on pattern deviation probability
maps”®®. VFI is heavily weighted towards the central visual
field, typically damaged later in the disease, which can also
compromise its ability to detect early glaucomatous change™.
The VFI values become highly variable in serial visual fields
of eyes with MDs crossing -20 dB compared with VFIs
associated with MDs on either side of -20 dB*”. In our study,
the VFI rate performed better than the MD rate. This may be
because VFI is less influenced by cataract and cataract surgery
than MD"™". This finding is consistent with the results of a
previous study which reported that the VFI rate performed
better than the MD rate in detecting fast-progressors”™®.

PLR can effectively detect subtle, localized changes in the
visual field that might be missed by global indices such as MD
and VFI, making it valuable for identifying focal progression.
However, the pointwise sensitivity of visual fields can show
considerable variability between tests, leading to a higher
false-positive rate of PLR". In the current study, PLR was the
slowest to detect progression and performed similarly to the
MD rate.

The sensitivity of progression detection of AGIS and CIGTS
scores in the current study was lower than that in a previous
study””. Our study showed that AGIS and CIGTS scores
detected the lowest proportion of eyes as progressing disease.
Among progressing eyes, 58% and 75% were identified using
AGIS and CIGTS criteria, respectively. This could be due to
the different follow-up periods in both studies. The mean visual
field number for each eye in this study was 8.92 compared with
25 and 22 for the progressing and non-progressing groups,
respectively, in the study by Heijl et al*”. AGIS and CIGTS

are tailored for more advanced stages of glaucoma; therefore,
their scoring systems might not have effectively detected
progression in patients with early to moderate glaucoma in our
study.

In our cohort of patients, the functional GEE model had the
highest proportion of eyes detected as progressing, and it
detected progression faster than other methods. The functional
GEE model offers several key advantages in detecting
visual field progression. 1) Capturing spatial information,
which enables us to capture spatial information by reflecting
correlation structures in the working correlation matrix. Unlike
conventional statistical models that assume independence
between observations, GEE accounts for the correlated
nature of visual field data by modeling spatial and temporal
relationships. This enables the detection of subtle progression
patterns that might be missed by global indices such as MD
and VFI rates. 2) Interpretability through coefficient estimation:
GEE is statistically interpretable because it estimates the
coefficients (beta), allowing for the interpretation of the
effects of covariates. Therefore, it facilitates clinical decision-
making by offering clear insights into the factors influencing
progression. 3) Flexibility with link functions: GEE is flexible
and can be applied to data from various distributions using
different link functions. The flexibility of GEE also allows
for the incorporation of different correlation structures,
improving model adaptability to various glaucoma severity
levels!"*"%,

Compared to commonly used progression detection methods,
the functional GEE model demonstrates superior performance
in identifying glaucomatous visual field deterioration. Global
indices such as MD and VFI rates lack the ability to capture
localized changes, whereas GEE effectively models spatial
dependencies to detect focal progression earlier. Similarly,
while PLR identifies localized defects, its high false-positive
rate can lead to unnecessary clinical interventions; in contrast,
GEE improves specificity by incorporating correlation
structures across multiple test locations. Furthermore, AGIS
and CIGTS scores, although useful for advanced glaucoma,
perform poorly in detecting early-stage disease, whereas
the proposed model provides a consistent approach across
all disease severities. Unlike deep learning-based methods,
which require extensive training data and may suffer from
interpretability issues, the functional GEE model retains
statistical transparency while leveraging functional data
analysis to improve detection accuracy.

However, the training process in the GEE requires a sufficiently
large sample size, and its computational complexity depends
on the sample size, which can lead to prolonged training times,
especially in large datasets. Functional GEE is sensitive to the
correlation structure selection. The accuracy of the estimates
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in the GEE depends on the choice of the working correlation
structure! ',

A previous study revealed a fair-to-moderate level of
agreement among methods for detecting visual field
progression in patients with glaucoma”. The functional GEE
model and VFI rate showed moderate agreement, whereas the
MBD and VFI rates showed the highest agreement. This finding
was not unexpected because the two global indices were
highly correlated. Therefore, combining multiple methods to
detect glaucoma progression can enhance diagnostic accuracy
and provide a more comprehensive understanding of disease
progression by integrating the strengths of various algorithms
and addressing their limitations.

This study has some limitations. The GPA method for
progression detection was not included in our study because of
the inability to access the data, as GPA is a proprietary software
developed by Carl Zeiss Meditec. The reference standard in
this study was established based on clinical evaluations of
the visual field alone by three glaucoma specialists, without
consulting any other clinical data, such as structural optic
nerve data. Inspection of serial stereoscopic optic nerve images
as a reference standard may improve the performance of our
model in progression detection.

In conclusion, the functional GEE approach showed the highest
proportion of eyes detected as perimetric progression and the
shortest time to detect perimetric progression. Therefore, by
identifying patients at a higher risk of glaucoma progression,
the proposed functional GEE model may enable clinicians
to tailor their treatment plans more effectively and closely
monitor changes. This could lead to earlier interventions and
potentially better outcomes in preserving vision of patients
with glaucoma.
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