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Abstract
● AIM: To build a functional generalized estimating 
equation (GEE) model to detect glaucomatous visual field 
progression and compare the performance of the proposed 
method with that of commonly employed algorithms.
● METHODS: Totally 716 eyes of 716 patients with primary 
open angle glaucoma (POAG) with at least 5 reliable 24-2 
test results and 2y of follow-up were selected. The functional 
GEE model was used to detect perimetric progression in 
the training dataset (501 eyes). In the testing dataset (215 
eyes), progression was evaluated the functional GEE model, 
mean deviation (MD) and visual field index (VFI) rates of 
change, Advanced Glaucoma Intervention Study (AGIS) and 
Collaborative Initial Glaucoma Treatment Study (CIGTS) 
scores, and pointwise linear regression (PLR).
● RESULTS: The proposed method showed the highest 
proportion of eyes detected as progression (54.4%), 
followed by the VFI rate (34.4%), PLR (23.3%), and MD 

rate (21.4%). The CIGTS and AGIS scores had a lower 
proportion of eyes detected as progression (7.9% and 5.1%, 
respectively). The time to detection of progression was 
significantly shorter for the proposed method than that of 
other algorithms (adjusted P≤0.019). The VFI rate displayed 
moderate pairwise agreement with the proposed method 
(k=0.47).
● CONCLUSION: The functional GEE model shows 
the highest proportion of eyes detected as perimetric 
progression and the shortest time to detect perimetric 
progression in patients with POAG.
● KEYWORDS: functional generalized estimating 
equation model; primary open angle glaucoma; perimetric 
progression
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INTRODUCTION

G laucoma is a progressive optic neuropathy characterized 
by glaucomatous optic disc cupping, retinal nerve fiber 

layer thinning, and visual field loss[1-2]. Standard automated 
perimetry remains the preferred approach for measuring 
disease progression in patients with glaucoma[3-5]. Therefore, 
detecting visual field progression is essential for the timely 
application of therapeutic intervention to preserve vision in 
patients with glaucoma[6].
Notably, the observed changes must exceed the expected 
visual field test-retest variability to detect true perimetric 
progression[7-8]. Larger intraocular pressure fluctuation, 
intervening cataract and glaucoma surgery, worse baseline 
mean deviation (MD), faster visual field decay rate, and higher 
false positive and false negative rates are associated with 
increased visual field fluctuation[9].
Numerous approaches have been used to detect visual field 
progression[10-12]. Event or trend-based methods including 
glaucoma progression analysis (GPA), rates of MD change, 
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and rates of visual field index (VFI) change, pointwise 
linear regression (PLR) analysis, the Advanced Glaucoma 
Intervention Study (AGIS) score, and Collaborative Initial 
Glaucoma Treatment Study (CIGTS) score have been 
suggested to help the clinician to objectively evaluate visual 
field progression. More recently, deep learning models have 
been proposed to identify visual field worsening and predict 
future visual fields[10,13-14]. Yousefi et al[15] reported that an 
automated machine learning system using archetypal analysis 
identified visual field loss patterns associated with rapid 
progression in patients with glaucoma. Kim et al[16] were 
able to enhance the detection of visual field progression with 
a hybrid approach combining archetypal analysis and fuzzy 
c-means.
Glaucomatous visual field progression is often challenging to 
detect due to significant test-retest variability and the absence 
of a universally accepted gold standard for progression 
assessment. Current methods, such as MD rate and VFI rate, 
provide global measures of visual field loss but may lack 
sensitivity to focal defects[17]. Similarly, pointwise regression 
methods, while capable of detecting localized changes, 
are prone to false positives due to intrinsic measurement 
variability[18]. The need for a more reliable approach that 
integrates spatial and temporal information to enhance 
sensitivity and specificity remains unmet.
The generalized estimating equation (GEE) model has been 
applied to estimate diagnostic measures in medical research. 
Martus et al[19] extended the GEE approach to investigate which 
diagnostic tests should be used as supplementary to each other 
in eyes with glaucoma. Musch et al[20], using a GEE model, 
found that surgical treatment was more beneficial for patients 
with advanced visual field loss, while medical treatment was 
more effective for patients with diabetes. Abe et al[21], using a 
GEE model, found that optical coherence tomography is more 
effective in detecting glaucoma progression in early stages, 
while standard automated perimetry is better for advanced 
stages, with the results influenced by disease severity and 
number of follow-up visits. Stagg et al[22], using a GEE model, 
found that Black individuals had greater visual field variability 
than White individuals, delaying glaucoma progression detection.
While previous studies have applied GEE to ophthalmic 
research, they have primarily utilized scalar covariates, 
overlooking the spatially correlated structure of visual field 
data. The proposed functional GEE model extends this 
approach by incorporating functional covariates, allowing for 
a more comprehensive assessment of visual field changes over 
time. This novel methodology enables better differentiation 
between true disease progression and measurement variability, 
potentially reducing false-positive rates and improving early 
detection.

This study aims to develop and validate a functional GEE 
model for detecting glaucomatous visual field progression. 
Unlike conventional methods that analyze individual test 
points or global indices separately, the proposed model 
accounts for both spatial dependencies and temporal changes 
in a unified framework. By comparing its performance to 
widely used progression detection algorithms—including MD 
rate, VFI rate, PLR, AGIS, and CIGTS score—we evaluate its 
potential for improving diagnostic accuracy and reducing time 
to progression detection in clinical practice.
PARTICIPANTS AND METHODS
Ethical Approval  This retrospective study was conducted 
following the principles of the Declaration of Helsinki, and the 
study protocol was approved by the Institutional Review Board 
of Pusan National University Hospital (approval number: 
2306-033-128). The institutional review board waived the 
requirement for patient informed consent due to the study’s 
retrospective design.
Study Design and Participants Selection  The 6385 visual 
fields from 716 eyes of 716 patients with primary open 
angle glaucoma (POAG) who visited glaucoma clinics at 
Pusan National University Hospital between June 2004 and 
January 2021 were included in this retrospective, longitudinal, 
observational study. 
The inclusion criteria were age >18y, diagnosis of POAG 
with five or more visual fields, and a minimum follow-up 
of 2y. The exclusion criteria included secondary glaucoma 
including steroid induced glaucoma, pigmentary glaucoma, 
pseudoexfoliation glaucoma, uveitic glaucoma, neovascular 
glaucoma, and angle recession glaucoma, uveitis, diabetic 
retinopathy, age-related macular degeneration, corneal opacity, 
ocular trauma, and nonglaucomatous optic neuropathies 
that might affect the visual field. The diagnosis of POAG 
was based on the following eligibility criteria: 1) presence 
of glaucomatous optic nerve appearance, corresponding 
and typical visual field loss; 2) open angles on gonioscopy. 
Glaucomatous optic neuropathy was defined as having more 
than a 0.2 cup-to-disc ratio asymmetry between the 2 eyes, 
neuroretinal rim thinning, notching, or characteristic retinal 
nerve fiber layer defects indicative of glaucoma. An abnormal 
visual field was defined as P<0.05 for the pattern standard 
deviation or a glaucoma hemifield test result outside normal 
limits or a cluster of ≥3 points in the pattern deviation plot in a 
single hemifield (superior/inferior) with P<0.05, one of which 
must have been P<0.01. One eye per individual was randomly 
selected when both eyes satisfied the inclusion criteria.
The 716 eyes of 716 participants were randomly split into 
training and test datasets at a ratio of 7:3. There was no patient 
overlap between the training and test datasets. Totally 501 
eyes of 501 patients were included in the method-development 
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training dataset for the functional GEE model to detect 
perimetric progression. The 215 eyes of 215 patients were 
included in the test dataset to evaluate and compare perimetric 
progression using commonly employed methods.
Baseline Measurements  All patients underwent thorough 
ophthalmologic examination, including best corrected 
visual acuity, slit-lamp examination, intraocular pressure 
measurement using Goldmann applanation tonometry, 
gonioscopy, dilated fundus examination with binocular indirect 
ophthalmoscopy and slit-lamp biomicroscopy with fundus 
lens, biometry using the IOL Master (Carl Zeiss Meditec, 
Dublin, CA, USA), central corneal thickness using ultrasonic 
pachymetry (Pachmate; DGH Technology, Exton, PA, USA), 
and keratometry using an auto-kerato-refractometer (ARK-
510A; NIDEK, Hiroshi, Japan). Snellen visual acuities were 
converted to a scale of the logMAR for comparison.
Visual Field Test  Automated perimetry was performed 
using a Humphrey Visual Field Analyzer 750i (Carl Zeiss 
Meditec Inc.) and a 24-2 or 30-2 Swedish interactive threshold 
algorithm. Among the 54 test points of the 24-2 test pattern, 
two physiological scotoma points were excluded, and the 
remaining 52 test points were used. The 30-2 test pattern 
was converted into a 24-2 test pattern using the overlapped 
test points. Reliable visual field tests were defined as a false 
positive rate <20%, a false negative rate <20%, and fixation 
loss <33%. 
Established Methods for Detecting Visual Field Progression  
A reference standard for visual field progression was defined 
as the clinician’s assessment of perimetric progression. Three 
glaucoma specialists (Kim H, Moon S, and Lee J) who were 
blind to the results of all computational methods clinically 
assessed each eye. First, pattern deviation (PD) plots were 
divided into six peripheral (superior and inferior nasal steps 
and superior and inferior Bjerrum areas) and two paracentral 
regions[23]. In each peripheral region, a visual field defect 
is defined as a cluster of at least three adjacent test points 
corresponding to retinal nerve fiber layer defect with -5 dB or 
worse for each point. However, a visual field defect is defined 
as at least two adjacent points with a sum of -15 dB or more 
for the paracentral region. 
Progression was defined in three ways: 1) the presence of a 
visual field defect in one or more regions in the last visual 
field, reproduced on a prior visual field but not observed in 
the baseline visual field; 2) when a visual field defect present 
in one or more regions on the last two visual fields is worse 
than that observed in the first two tests (average PD value for 
all test points in the region worsened by -3 dB or more); or 
3) when the average MD values of the final two visual fields 
was worse by -3 dB or more than the average of the first two 
visual fields. If the last visual field in the series showed no 

visual field defects in any regions, the status was defined as no 
progression. Two glaucoma specialists (Kim H and Moon S) 
reviewed each visual field series following above mentioned 
set of criteria. A third glaucoma specialist (Lee J) reviewed all 
cases of disagreement to reach unanimous decisions.
The AGIS score was calculated for each visual field, as 
described in the AGIS trial[11]. This score uses the total 
deviation plot and ranged from 0 to 20, and the scores for each 
visual field were compared with the baseline scores. An AGIS 
score increment of at least four points, sustained for three 
consecutive visual fields, was classified as progression.
The CIGTS score calculation was previously described in the 
CIGTS trial[11]. This score uses the total deviation probability 
map and ranged from 0 to 20, and an increment of three or 
more test points, sustained for three consecutive visual field, 
was classified as progression.
The MD and VFI slopes were calculated using a simple linear 
regression of the MD and VFI values for the visual fields. 
For MD and VFI, visual field progression was defined as a 
negative slope with a P<0.05[11].
For PLR, linear regression was performed for the total 
deviation values (TDVs) of each of the 52 visual field points. 
Visual field progression was defined as the presence of any three 
points with a negative slope ≤-1 dB/year with a P<0.01[11].
Statistical Analysis  Spatial statistical models mainly focus 
on random objects measured at grid points (specified by the 
horizontal and vertical axes). Following Cressie and Wikle[24], 
spatial data points can be characterized by spatial associations 
between different locations. Similar to time-series data, spatial 
data exhibit heteroscedasticity and spatial autocorrelation 
owing to spatial fluctuations; therefore, the observed data 
cannot be assumed to be extracted from an independent 
and homogeneous distribution. Thus, a special approach to 
analyzing spatial data is required. Let us denote sl ∈ S as the 
grid points associated with the spatial location, where l denotes 
the lth pixel associated with the location vector Sl and S denotes 
the entire domain set, that is, S={s1, s2,…, sK}. A set of spatial 
data {X*

ij (s1), X
*
ij (s2),…, X*

ij (sK)} is observed for the ith subject 
at the jth visual field examination.
The smoothing process is a statistical method that gives rise 
to borrowing strength and reinforces the signal by removing 
noise. This process is used in various fields, including 
statistical analysis, data analysis, signal processing, image 
processing, and spatial analysis. We adopted the weighted 
average method, known as Toba’s law, which is widely used 
in spatial smoothing processes. The primary idea of this 
smoothing method is to give more weight to observations with 
a close location and visit time from the given location and visit 
time, while giving a small weight to observations with a distant 
location and time within the individual subject. Specifically, 
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the smoothed observation for the ith subject at the location Sl 
and time point j is given by 

              

where

               

wijkm (Sl)=1/2 Nt (τ)|(|NS (h)|-1) if k=j, m≠l, wijkm (sl)=1/2|Nt (τ)| if 
k≠j, m=l, wijkm (sl)=1/2 if k=j, m=l, and wijkm (sl)=0 otherwise, for 
which NS (h) denotes a set of spatial locations with the spatial 
lag within some tolerance of h, Nt (τ) denotes a set of time 
points with the time lag within some tolerance of τ, and |N (∙)| 
denotes the number of elements in a set N (∙). Weights can be 
set using more flexible kernel functions and various distance 
metrics; however, we used moving average-type weights in 
this analysis.
We regarded the smoothed spatial data as functional data and 
applied a statistical model associated with functional data 
analysis to the pre-processed data. Functional data refers to 
data that can be represented as functions over time, space, or 
other continuous variables. In the functional data analysis, 
each participant was analyzed as an entire function rather 
than as an independent value. This allows the examination of 
characteristics such as patterns in the data, trends, derivatives, 
and integrals. Liang and Zeger[25] introduced the GEE 
method to deal with correlated data: the correlation among 
responses. This has several advantages from a statistical 
perspective. As mentioned above, the GEE analyzes repeated 
measurements or clustered data, in which observations are 
dependent. The GEE is flexible for distributional assumptions 
and conditions of residuals in that it does not require the 
assumption of independence and deals with various types 
of dependent variables (binary, count, and continuous) and 
the family of generalized linear models. In addition, GEE 
provides robust standard error estimates. Specifically, the 
corresponding standard error estimates remain unbiased even 
if the model is misspecified, that is, the correlation structure is 
incorrectly specified. Furthermore, the GEE specifies different 
correlation structures such as independence, exchangeable, 
and AR (1), making it possible to select the most appropriate 
correlation structure based on data characteristics. Finally, the 
estimated regression coefficients in the GEE model can be 
interpreted similarly to those in the generalized linear models. 
Therefore, the results are relatively straightforward and easy to 
understand. For the set of functional data {(yij, Xij (s1), Xij (s2),…, 
Xij (sK))}i=1,…,n, j=1,…,Ti, we considered the functional GEE model 
as follows:

         

Where g (∙) is the link function, β0 is the intercept, and β (∙) is a 
functional coefficient. 
Assuming the logit link

                                        

because of yij ∈ {0, 1} for all i and j, where the value of zero 
means nonprogressing and the value of one means progressing, 
the empirical risk with respect to the negative likelihood 
function is given by

 

By differentiating the given expression, we obtain the set of 
GEEs given by

                      

where 
          

        

  

and Ri (α) is a working correlation matrix with Corr (yij, yij’)=α 
if j≠j’ and Corr (yij, yij’)=1 if j=j’.
Therefore, an exchangeable correlation structure was used, 
because it provides good results under various conditions. 
We used the TDVs as functional covariates and the number 
of pixels K was set at K=52. The coefficients and estimated 
probabilities were calculated by minimizing the empirical risk.
Evaluation  Using estimated coefficients, the estimated 
probability  is given by

                   

For each visual field examination of all participants, the 
optimal cut-off value δ of the estimated probabilities was 
selected using the receiver operating characteristic (ROC) 
curve. The optimal cut-off value was selected through 
Youden’s J statistics,
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The area under the curve (AUC) was calculated to evaluate the 
sensitivity and specificity using the optimal cut-off value, δ. 
Accuracy was also calculated to compare our proposed method 
with existing methods.

AUC=integral of ROC curve from (0,0) to (1,1)

                   

Where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative.
The proportion of the visual field series identified as 
progressive was defined as the percentage of progressing eyes 
determined by each method. Eyes meeting the progression 
criteria according to a given algorithm at any follow-up visit 
were defined as progression[26]. There is no gold standard to 
define visual field progression in patients with glaucoma; 
therefore, the proportion of series detected as progression is 
used as a surrogate measure of sensitivity[26].
Time to the first detection of progression was assessed using 
Kaplan-Meier curves, differences across methods were 
compared using the log-rank test, and multiple comparisons 
were adjusted using the Bonferroni test. Furthermore, Cohen’s 
kappa statistic was used to measure a pairwise agreement 
between the methods[26].
RESULTS
The mean±standard deviation age of the patients at baseline 
visit, number of visual fields per eye, and follow-up period 
were 61.81±14.98y, 8.92±3.91 and 5.52±3.16y, respectively 
(Table 1).
The accuracy (mean±standard deviation) of the functional 
GEE model in comparison to the clinician’s assessment of 

perimetric progression was 0.750±0.031 [confidence interval 
(CI)=0.689, 0.811]. However, the accuracy of conventional 
methods in comparison to the clinician’s assessment of 
perimetric progression were 0.507±0.026 (CI=0.456, 0.559), 
0.592±0.027 (CI=0.539, 0.644), 0.527±0.027 (CI=0.474, 
0.580), 0.410±0.026 (CI=0.359, 0.462), 0.436±0.028 
(CI=0.382, 0.490) for MD, VFI, PLR, AGIS, and CIGTS 
criteria, respectively (Table 2).
Table 3 shows that the functional GEE model had the highest 
proportion of eyes detected as progression, followed by the 
VFI rate, PLR, and MD rate, which had a moderate proportion. 
However, the CIGTS and AGIS scores had a considerably 
lower proportion of series detected as progression. The 
proportion of eyes detected as progression was 54.4%, 34.4%, 
23.3%, 21.4%, 7.9%, and 5.1% for the functional GEE 
model, VFI rate, PLR, MD rate, CIGTS, and AGIS scores, 
respectively.
Figure 1 showed the cumulative proportion of progressing 
eyes according to each technique. The time to detect 
progression was significantly shorter for the functional GEE 
model compared with that for every other algorithm (adjusted 
P≤0.019). However, no other pairwise comparisons were 
statistically significant. The median (interquartile range) time 
to detect progression was 905 (479-1435)d, 1500 (919-2018)d, 
1542 (965-2019)d, 1617 (1236-2198)d, 1694 (955-2444)d, and 
2198 (1351-2468)d for the functional GEE model, VFI rates, 
MD rates, CIGTS, PLR, and AGIS, respectively.
Table 4 presents the pairwise agreement between the methods. 
The VFI rate displayed moderate pairwise agreement with 
the functional GEE model (κ=0.47), while the MD rate and 

Table 1 Demographic and ophthalmological characteristics of the entire subjects

Characteristics Total subjects Train dataset Test dataset P
Number of eyes/patients 716/716 501/501 215/215
Visual field: MD≥-6 dB 441 303 138 0.644a

Visual field: -6>MD≥-12 dB 208 150 58
Visual field: MD<-12 dB 67 48 19
Age (y) 61.81±14.98 61.63±14.75 62.22±15.53 0.633b

Eye, right/left 367/349 254/247 113/102 0.648a

Sex, male/female 358/358 260/241 98/117 0.121a

Intraocular pressure (mm Hg) 15.91±3.79 15.87±3.66 16.00±4.06 0.668b

Axial length (mm) 24.90±1.86 24.97±1.86 24.73±1.85 0.179b

Spherical equivalent (diopter) -2.57±3.56 -2.58±3.45 -2.53±3.82 0.872b

Central corneal thickness (µm) 557.73±272.62 553.56±227.93 567.38±355.55 0.551b

BCVA (logMAR) 0.11±0.16 0.11±0.17 0.10±0.14 0.803b

MD (dB) -5.60±3.88 -5.67±3.92 -5.46±3.80 0.513b

VFI (%) 88.38±11.46 88.30±11.53 88.55±11.30 0.786b

PSD (dB) 5.55±3.98 5.55±3.98 5.56±3.99 0.974b

Number of visual fields per eye 8.92±3.91 9.05±3.99 8.62±3.74 0.181b

Follow-up (y) 5.52±3.16 5.63±3.20 5.24±3.06 0.131b

BCVA: Best-corrected visual acuity; logMAR: Logarithm of the minimum angle of resolution; MD: Mean deviation; PSD: Pattern standard 

deviation; VFI: Visual field index. aChi-squared test; bStudent t-test.

Functional GEE model and glaucomatous visual field progression



307

Int J Ophthalmol,    Vol. 19,    No. 2,  Feb. 18,  2026        www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

PLR exhibited fair agreement with the functional GEE model 
(κ=0.283 and κ=0.281, respectively).
Figure 2 showed three representative cases with visual 
field baseline MD≥-6 dB, in which the functional GEE 
model detected perimetric progression earlier than other 
algorithms. In the visual field of November 26, 2019 when the 

functional GEE model detected perimetric progression, TDV 
deterioration was apparent in the superior paracentral and nasal 
step area. These initial changes progressed to obvious superior 
and inferior visual field defects in the later visual field (Figure 
2A). In the visual field of June 30, 2016, when the functional 
GEE model detected perimetric progression, the deterioration 
of TDV was apparent in the nasal step area. This initial change 
became obvious in the later visual field (Figure 2B). In the 
visual field of September 26, 2017, when the functional GEE 
model detected perimetric progression, the deterioration of 
TDV was apparent in the superior paracentral and nasal step 
area. This initial change became obvious in the later visual 
field (Figure 2C). 
Figure 3 showed three representative cases with visual field 
baseline MD<-6 dB, in which the functional GEE model 
detected perimetric progression earlier than other algorithms. 
In the visual field of October 12, 2018, when the functional 
GEE model detected perimetric progression, the deterioration 
of TDV was apparent in the inferior Bjerrum’s area. This initial 
change progressed to an obvious inferior arcuate scotoma in 
the later visual field (Figure 3A). In the visual field of August 
7, 2014, when the functional GEE model detected perimetric 

Table 2 Measures of the accuracy of the different methods

Category (AUC) Accuracy (mean±SD) Confidence interval
Functional GEE model (0.803) 0.750±0.031 0.689, 0.811
MD rate 0.507±0.026 0.456, 0.559
VFI rate 0.592±0.027 0.539, 0.644
PLR 0.527±0.027 0.474, 0.580
AGIS 0.410±0.026 0.359, 0.462
CIGTS 0.436±0.028 0.382, 0.490

AGIS: Advanced Glaucoma Intervention Study; AUC: Area under the receiver operating characteristic curve; 

CIGTS: Collaborative Initial Glaucoma Treatment Study; GEE: Generalized estimating equations; MD: Mean 

deviation; PLR: Pointwise linear regression; SD: Standard deviation; VFI: Visual field index.

Table 3 Measures of diagnostic properties of the different methods
Status Functional GEE MD rate VFI rate PLR AGIS CIGTS
Progressing 117 46 74 50 11 17
Non-progressing 98 169 141 165 204 198
Detection rate (%) 54.4 21.4 34.4 23.3 5.1 7.9

AGIS: Advanced Glaucoma Intervention Study; CIGTS: Collaborative Initial Glaucoma Treatment Study; GEE: Generalized estimating equations; 

MD: Mean deviation; PLR: Pointwise linear regression; VFI: Visual field index.

Table 4 Kappa values of the different methods to detect perimetric progression in the test dataset

Items Functional GEE MD rate VFI rate PLR AGIS CIGTS
Reference standard 0.592 0.202 0.424 0.197 0.068 0.106
Functional GEE NA 0.283 0.47 0.281 0.086 0.117
MD rate NA NA 0.55 0.517 0.292 0.3
VFI rate NA NA NA 0.42 0.161 0.18
PLR NA NA NA NA 0.266 0.306
AGIS NA NA NA NA NA 0.543

AGIS: Advanced Glaucoma Intervention Study; CIGTS: Collaborative Initial Glaucoma Treatment Study; GEE: Generalized estimating equations; 

MD: Mean deviation; PLR: Pointwise linear regression; VFI: Visual field index.

Figure 1 The cumulative proportion of progressing eyes according 

to each method in the test dataset  AGIS: Advanced Glaucoma 

Intervention Study; CIGTS: Collaborative Initial Glaucoma Treatment 

Study; GEE: Generalized estimating equations; MD: Mean deviation; 

PLR: Pointwise linear regression; VFI: Visual field index.
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progression, the deterioration of TDV was apparent in the 
superior and inferior paracentral area. These initial changes 
progressed to an obvious ring scotoma in the later visual 
field (Figure 3B). In the visual field of July 3, 2012, when the 
functional GEE model detected perimetric progression, the 
deterioration of TDV was apparent in the superior paracentral 
area. This initial change became an obvious superior altitudinal 
defect in the later visual field (Figure 3C).
DISCUSSION
We developed a functional GEE model to detect perimetric 

progression. Compared with existing methods, the functional 
GEE model had the highest proportion of eyes detected as 
progression and the earliest detected progression in patients 
with POAG. The agreement with existing approaches ranged 
from fair to moderate, except for the AGIS and CIGTS. AGIS 
and CIGTS had the lowest proportion of eyes detected as 
progression.
The clinician evaluation graded by a glaucoma specialist based 
on clearly defined criteria was used as the reference standard 
to evaluate the accuracy of our functional GEE model[27]. The 

Figure 2 Representative cases with early glaucoma with baseline MD≥-6 dB, in which the functional GEE model detected perimetric 

progression earlier than other algorithms  A: In a 36-year-old female patient, the functional GEE model detected perimetric progression earlier 

than the MD rate, VFI rate, and PLR analysis; B: In a 22-year-old male patient, the functional GEE model detected perimetric progression earlier 

than PLR analysis and VFI rate; C: In a 32-year-old female patient, the functional GEE model detected perimetric progression earlier than the VFI 

rate, MD rate, and PLR analysis. GEE: Generalized estimating equations; MD: Mean deviation; PLR: Pointwise linear regression; VFI: Visual field index.

Figure 3 Representative cases with moderate to advanced glaucoma with baseline MD<-6 dB, in which the functional GEE model detected 

perimetric progression earlier than other algorithms  A: In a 49-year-old male patient, the functional GEE model detected perimetric 

progression earlier than the MD and VFI rate; B: In a 36-year-old female patient, the functional GEE model detected perimetric progression 

earlier than the VFI rate, MD rate, and PLR analysis; C: In a 33-year-old male patient, the functional GEE model detected perimetric progression 

earlier than the VFI rate, MD rate, and PLR analysis. GEE: Generalized estimating equations; MD: Mean deviation; PLR: Pointwise linear 

regression; VFI: Visual field index.
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accuracy of the functional GEE model (0.750) outperformed 
that of the MD rate (0.507), VFI rate (0.592), PLR (0.527), 
CIGTS (0.436), and AGIS (0.410).
Detecting perimetric progression in patients with glaucoma 
is challenging. Notably, several methods exist for monitoring 
changes in visual fields; however, no single approach has been 
universally accepted as the gold standard. Furthermore, using 
subjective clinician evaluation as a reference standard may 
underestimate or overestimate the performance of progression 
detection methods[27]. However, clinician assessment has been 
widely used as a reference standard to evaluate progression 
algorithms in previous studies and we used clearly defined 
criteria for clinician assessment[26-27].
MD and VFI are global indices that summarize mean damage 
across the entire visual field. However, the MD rate may be 
insensitive to focal components of visual field deterioration[17]. 
Furthermore, the VFI provides no spatial information about the 
visual field and may be insensitive to regional changes or focal 
components of damage in the same manner[28]. VFI may be less 
able to detect early glaucomatous change due to the ceiling 
effect derived from its reliance on pattern deviation probability 
maps[28]. VFI is heavily weighted towards the central visual 
field, typically damaged later in the disease, which can also 
compromise its ability to detect early glaucomatous change[28]. 
The VFI values become highly variable in serial visual fields 
of eyes with MDs crossing -20 dB compared with VFIs 
associated with MDs on either side of -20 dB[29]. In our study, 
the VFI rate performed better than the MD rate. This may be 
because VFI is less influenced by cataract and cataract surgery 
than MD[28]. This finding is consistent with the results of a 
previous study which reported that the VFI rate performed 
better than the MD rate in detecting fast-progressors[26].
PLR can effectively detect subtle, localized changes in the 
visual field that might be missed by global indices such as MD 
and VFI, making it valuable for identifying focal progression. 
However, the pointwise sensitivity of visual fields can show 
considerable variability between tests, leading to a higher 
false-positive rate of PLR[18]. In the current study, PLR was the 
slowest to detect progression and performed similarly to the 
MD rate.
The sensitivity of progression detection of AGIS and CIGTS 
scores in the current study was lower than that in a previous 
study[30]. Our study showed that AGIS and CIGTS scores 
detected the lowest proportion of eyes as progressing disease. 
Among progressing eyes, 58% and 75% were identified using 
AGIS and CIGTS criteria, respectively. This could be due to 
the different follow-up periods in both studies. The mean visual 
field number for each eye in this study was 8.92 compared with 
25 and 22 for the progressing and non-progressing groups, 
respectively, in the study by Heijl et al[30]. AGIS and CIGTS 

are tailored for more advanced stages of glaucoma; therefore, 
their scoring systems might not have effectively detected 
progression in patients with early to moderate glaucoma in our 
study.
In our cohort of patients, the functional GEE model had the 
highest proportion of eyes detected as progressing, and it 
detected progression faster than other methods. The functional 
GEE model offers several key advantages in detecting 
visual field progression. 1) Capturing spatial information, 
which enables us to capture spatial information by reflecting 
correlation structures in the working correlation matrix. Unlike 
conventional statistical models that assume independence 
between observations, GEE accounts for the correlated 
nature of visual field data by modeling spatial and temporal 
relationships. This enables the detection of subtle progression 
patterns that might be missed by global indices such as MD 
and VFI rates. 2) Interpretability through coefficient estimation: 
GEE is statistically interpretable because it estimates the 
coefficients (beta), allowing for the interpretation of the 
effects of covariates. Therefore, it facilitates clinical decision-
making by offering clear insights into the factors influencing 
progression. 3) Flexibility with link functions: GEE is flexible 
and can be applied to data from various distributions using 
different link functions. The flexibility of GEE also allows 
for the incorporation of different correlation structures, 
improving model adaptability to various glaucoma severity 
levels[19,31-33].
Compared to commonly used progression detection methods, 
the functional GEE model demonstrates superior performance 
in identifying glaucomatous visual field deterioration. Global 
indices such as MD and VFI rates lack the ability to capture 
localized changes, whereas GEE effectively models spatial 
dependencies to detect focal progression earlier. Similarly, 
while PLR identifies localized defects, its high false-positive 
rate can lead to unnecessary clinical interventions; in contrast, 
GEE improves specificity by incorporating correlation 
structures across multiple test locations. Furthermore, AGIS 
and CIGTS scores, although useful for advanced glaucoma, 
perform poorly in detecting early-stage disease, whereas 
the proposed model provides a consistent approach across 
all disease severities. Unlike deep learning-based methods, 
which require extensive training data and may suffer from 
interpretability issues, the functional GEE model retains 
statistical transparency while leveraging functional data 
analysis to improve detection accuracy.
However, the training process in the GEE requires a sufficiently 
large sample size, and its computational complexity depends 
on the sample size, which can lead to prolonged training times, 
especially in large datasets. Functional GEE is sensitive to the 
correlation structure selection. The accuracy of the estimates 
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in the GEE depends on the choice of the working correlation 
structure[19,31-33].
A previous study revealed a fair-to-moderate level of 
agreement among methods for detecting visual field 
progression in patients with glaucoma[26]. The functional GEE 
model and VFI rate showed moderate agreement, whereas the 
MD and VFI rates showed the highest agreement. This finding 
was not unexpected because the two global indices were 
highly correlated. Therefore, combining multiple methods to 
detect glaucoma progression can enhance diagnostic accuracy 
and provide a more comprehensive understanding of disease 
progression by integrating the strengths of various algorithms 
and addressing their limitations.
This study has some limitations. The GPA method for 
progression detection was not included in our study because of 
the inability to access the data, as GPA is a proprietary software 
developed by Carl Zeiss Meditec. The reference standard in 
this study was established based on clinical evaluations of 
the visual field alone by three glaucoma specialists, without 
consulting any other clinical data, such as structural optic 
nerve data. Inspection of serial stereoscopic optic nerve images 
as a reference standard may improve the performance of our 
model in progression detection.
In conclusion, the functional GEE approach showed the highest 
proportion of eyes detected as perimetric progression and the 
shortest time to detect perimetric progression. Therefore, by 
identifying patients at a higher risk of glaucoma progression, 
the proposed functional GEE model may enable clinicians 
to tailor their treatment plans more effectively and closely 
monitor changes. This could lead to earlier interventions and 
potentially better outcomes in preserving vision of patients 
with glaucoma.
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