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Abstract
● AIM: To develop an automated model for subfoveal 
choroidal thickness (SFCT) detection in optical coherence 
tomography (OCT) images, addressing manual fovea 
location and choroidal contour challenges.
● METHODS: Two procedures were proposed: defining 
the fovea and segmenting the choroid. Fovea localization 
from B-scan OCT image sequence with three-dimensional 
reconstruction (LocBscan-3D) predicted fovea location using 
central foveal depression features, and fovea localization 
from two-dimensional en-face OCT (LocEN-2D) used a mask 
region-based convolutional neural network (Mask R-CNN) 
model for optic disc detection, and determined the fovea 
location based on optic disc relative position. Choroid 
segmentation also employed Mask R-CNN. 
● RESULTS: For 53 eyes in 28 healthy subjects, LocBscan-
3D’s mean difference between manual and predicted fovea 
locations was 170.0 μm, LocEN-2D yielded 675.9 μm. LocEN-
2D performed better in non-high myopia group (P=0.02). 
SFCT measurements from Mask R-CNN aligned with manual 
values.
● CONCLUSION: Our models accurately predict SFCT 
in OCT images. LocBscan-3D excels in precise fovea 
localization even with high myopia. LocEN-2D shows high 
detection rates but lower accuracy especially in the high 
myopia group. Combining both models offers a robust SFCT 
assessment approach, promising efficiency and accuracy 
for large-scale studies and clinical use.
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INTRODUCTION

T he choroid, among tissues with the highest metabolic rate 
in the body, is located between the retina and the sclera. 

It supplies oxygen and metabolic needs to the retina, and is 
indispensable for the visual function[1]. The choroid is composed 
of three layers with different vessel sizes and physiology: the 
choriocapillaris, Sattler’s layer, and Haller’s layer[2].
With the development of optical coherence tomography (OCT), 
structures of the posterior visual segment such as the retinal 
and choroidal layers can be discriminated and measured. By 
depicting and measuring the thickness of choroidal layers in 
OCT images, features and their subtle details can be evaluated 
in some ocular diseases. Changes in thickness of choroid 
with age and ocular diseases have been reported[3-4]. Previous 
studies showed a negative correlation between choroidal 
thickness and age in the healthy population[5-6]. On the other 
hand, choroidal thickness and morphology are influenced not 
only by physiological factors such as age, refractive error, 
and axial length, but also in pathological conditions such 
as age-related macular degeneration, polypoidal choroidal 
vasculopathy, chorioretinitis, and autoimmune diseases[7-9]. 
Furthermore, systemic diseases such as diabetes, hypertension, 
and multiple sclerosis are known to be associated with changes 
in choroidal thickness. Notably, such alterations in the choroid 
may manifest even before the onset of retinopathy or systemic 
disorders[10-13]. 
Several approaches have been reported to evaluate choroidal 
thickness, including specific location and general assessments. 
The former involves subfoveal choroidal thickness (SFCT), 
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at sites located at certain distance (e.g., 1 or 3 mm) from the 
fovea in the temporal, nasal, superior or inferior directions[14-16]; 
and the latter involves continuous calculation for intact 
evaluation[17-19]. In most instances, the choroid underneath 
the central macular region, also known as SFCT, presents the 
maximal thickness compared with other choroid sites. SFCT 
is widely regarded as a valuable and significant indicator in 
assessing choroidal status, such as pathological changes in 
choroid, changes in thickness with aging and refraction status, 
and even in its correlation with cardiovascular diseases[7,20]. 
Since manually both locating the fovea and outlining the 
contours of the choroid are inconvenient and time-consuming 
for large-scale investigation. Additionally, achieving reliable 
repeatability in manual sketching is difficult to achieve due 
to the ambiguous border of the choroid. Therefore, a reliable 
technique with automatic detection of SFCT can ameliorate the 
above predicament and evaluate SFCT more effectively and 
accurately. Based on above statement, an automatic model for 
SFCT detection is practical and important. 
To measure SCFT automatically, there are two crucial 
procedures: 1) defining the location of the fovea, 2) 
segmenting the choroid. Several recent studies have 
advanced automatic choroid detection methodologies. Li et 
al[21] employed a group-wise context selection network in 
conjunction with swept-source OCT to identify the choroid in 
highly myopic individuals. Yan et al[22] introduced a context-
efficient adaptive network for choroid thickness computation, 
yielding satisfactory outcomes in healthy subjects. Masood 
et al[23] proposed a model that integrates convolutional neural 
networks (CNNs) with morphological techniques to extract 
only superficial features. Hsia et al[24] introduced the mask 
region-based CNN (Mask R-CNN), which has demonstrated 
the ability to retain critical information and features. When 
applied to choroidal segmentation, it achieves automatic, 
precise, and efficient prediction of choroidal boundaries. 
Subsequent studies utilizing Mask R-CNN have confirmed 
its robustness and reliability in various conditions[5,25]. In 
this study, we specifically apply the Mask R-CNN model for 
choroid segmentation. 
In automatic fovea detection, a precise understanding of the 
macular contour is crucial. The anatomical definition of the 
fovea describes it as a depression at the center of the macula. 
OCT images offer detailed anatomical insights and come with 
benefits such as rapid examination and not requiring pupil 
dilation. Therefore, we designed our fovea detection model 
in this study using OCT images[26-27]. Our approach involves 
a 3-dimensional (3D) reconstruction model to automatically 
identify the anatomical depression in OCT sequences, adhering 
closely to the anatomic definition, and complemented by a 
2-dimensional (2D) model to enhance comprehensiveness.

In our study, we aimed to develop a reliable model for 
predicting SFCT automatically. In choroidal segmentation, the 
proposed Mask R-CNN model was applied. Regarding fovea 
detection, a novel model comprising 3D reconstruction of OCT 
sequences and complementary 2D information was introduced 
and validated. 
SUBJECTS AND METHODS 
Ethical Approval  This study adhered to the principle of the 
Declaration of Helsinki and was approved by the Institutional 
Review Board of Taichung Veterans General Hospital, Taiwan, 
China (approval number: CE21201B), with an exemption 
granted for informed consent.  
Participants and Data Acquisition  We recruited participants 
over 18 years of age and had no significant ocular diseases 
from Taichung Veterans General Hospital, Taiwan. We 
excluded participants who had a history of intraocular 
intervention or significant ocular diseases that could potentially 
impact the retina and choroid, such as ocular tumor, diabetic 
retinopathy, inflammatory diseases, age-related macular 
degeneration, or subretinal fluid. However, we did not exclude 
those with high myopia, defined as a spherical equivalent 
<-6.0 diopter (D). This criterion was made to investigate the 
detection ability of our model and to gather more information 
from this specific population. In total, we included 53 eyes 
from 28 healthy subjects for our study.
All participants underwent a spectral domain OCT scan with 
enhanced depth imaging mode (Heidelberg Engineering, 
Heidelberg, Germany). The scan images provided adequate 
quality and depth for the evaluation of choroidal layers. Each 
OCT scan sequence consisted of 97 2D slices covering an 
area of 6 mm×6 mm centering at the fovea. En-face OCT was 
also recorded. The fovea location for each OCT sequence was 
identified first by ophthalmologists, and the choroid boundary 
on the corresponding slice. The boundary results were carefully 
confirmed by two ophthalmologists.
Image Instances Segmentation-Mask R-CNN  The Mask 
R-CNN model has a two-stage framework[28]. In the first stage, 
the input images were convolved to produce distinctive feature 
maps and proposals through a regional proposal network 
(RPN). The RPN utilizes the backbone network (typically either 
ResNet-50 or ResNet-101; in our study, we used the ResNet-50) 
to generate the feature maps from the input images. These 
features are then passed onto the RPN to generate proposals 
for the coordinates of the optic disc. In the second stage, the 
proposals were classified by a fully convolutional network 
(FCN) to generate bounding boxes and masks, and the final 
feature maps were finally produced. The Mask R-CNN approach 
was deployed to delineate the desired regions in this study. 
To assess the robustness of the models across varying image 
conditions, we employed K-fold cross-validation on the 
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dataset. K-fold cross-validation is a technique used to evaluate 
model performance, ensuring validity across the dataset 
without bias towards specific images and guarding against 
overfitting. Widely utilized in the realm of machine learning, it 
examines whether model performance remains consistent both 
within and beyond the dataset. In this study, we implemented 
5-fold cross-validation. The dataset was randomly divided 
into 5 equal groups, and training was conducted 5 times. 
During each training iteration, 4 groups served as the training 
set, while the remaining group served as the testing set. This 
process was repeated until all groups had been trained and 
tested, with the results being averaged across all folds to 
determine overall performance.
Automatic Fovea Detection  Figure 1 showed the flowchart 
of the proposed method for choroidal thickness assessment. 
Two models for automatic fovea detection were proposed in 
this study, namely 1) the fovea localization from the B-scan 
OCT image sequences with 3D reconstruction (LocBscan-
3D), and 2) fovea localization from 2D en-face OCT images 
(LocEN-2D). By the combined strengths of these two 
models, we aimed to provide the comprehensive and accurate 
fovea prediction. Details of these two models are explained 
below.
LocBscan-3D  For data preprocessing, we expanded the 
coordinates to create a shape suitable for our model to 
construct a series of 3D images. In image processing, linear 
interpolation is commonly used for tasks such as image 
resizing or resampling. Linear interpolation provides a simple 
method for estimating the gray-level values of these new 
pixels based on the gray-level of nearby pixels.  The linear 
interpolation algorithm was hence used to expand each image 5 
times the original 2D OCT images with 97 slices per sequence, 
resulting in a new series of images. Figure 2 illustrated the 
construction of the LocBscan-3D model.
In the 3D reconstructed image, our model scanned from the 
innermost portion of the retina and progressed slice by slice 
towards the outermost area of the sclera. The vitreous cavity 
appeared to be non-reflective or hyporeflective at first, turning 
to hyperreflective until the scanned area had reached the 
inner limiting membrane. Given the characteristic of central 
depression of the fovea, we defined the fovea location at the 
point where the non-reflective area disappeared, up to the last 
detectable slice of the model. In this study, we utilized the 
Mask R-CNN model to isolate the non-reflective region within 
each 3D reconstructed image. 
To predict the fovea location from the 3D images, we applied 
linear prediction to extract the result and identified the 
vanishing point. The vanishing point represents the critical 
coordinates revealing the fovea location, and the smallest 
vanishing point was considered as the fovea location in the 

image. Figure 3 showed an example of the predicted fovea 
location with the LocBscan-3D model. Since images had been 
artificially expanded, we used a reverse interpolation after 
extracting the results to transform them back to 2D images of 
the original size. The process enabled accurate matching of the 
slices and calculation of the proper slice coordinates.
LocEN-2D  This study also utilized the Mask R-CNN model 
to delineate the optic disc area from the en-face OCT images. 
After identifying the optic disc, we defined the fovea location 
in this model as 4.5 mm temporal and 0.65 mm inferior to 
the center of the optic disc. This determination was based on 
the findings reported in previous publications[27-29]. We then 

Figure 2 Depiction of LocBscan-3D model (simplified)  Each 

OCT sequence with 97 2D slices were expanded five times by 

interpolation algorithm, and the 3D image collection was constructed 

subsequently. LocBscan-3D: Fovea localization from B-scan OCT 

image sequence with three-dimensional reconstruction; OCT: Optical 

coherence tomography.

Figure 1 Flowchart of the proposed method  Two models were 

designed for automated fovea detection: LocBscan-3D and LocEN-

2D. Furthermore, the integration of automatic choroid segmentation 

enabled the derivation of SFCT. LocBscan-3D: Fovea localization from 

B-scan OCT image sequence with three-dimensional reconstruction; 

LocEN-2D: Fovea localization from two-dimensional en-face OCT 

image; SFCT: Subfoveal choroidal thickness; OCT: Optical coherence 

tomography.
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transferred the fovea location from the en-face OCT to the 
corresponding coordinates on the B-scan slices.
Automatic Choroid Segmentation and SFCT Measurement  
In our study, we evaluated SFCT using several methods, 
including manual delineation by ophthalmologists and 
prediction from the Mask R-CNN model. The Mask R-CNN 
model was used for choroid segmentation as well[24]. SFCT 
was calculated vertically from the inner boundary of the 
choroid to the outer boundary underneath the predicted fovea. 
SFCT measurements were obtained by combining the choroid 
area predicted by the Mask R-CNN model and the fovea 
location labeled by ophthalmologists and later identified using 
the LocBscan-3D and LocEN-2D models as mentioned above.
Statistical Analysis  Fovea locations on OCT images predicted 
by the LocBscan-3D model, LocEN-2D model, and labeled 
by ophthalmologists were expressed in a coordinate system. 
The distances between the fovea locations defined manually 
and the two automatic prediction models were calculated 
and compared. SFCT was also measured based on the fovea 
location predicted by the LocBscan-3D and LocEN-2D 
models.
Subjects with and without high myopia were further analyzed. 
A paired t-test was performed to compare the difference in 
predictive accuracy between two models. A two-sample 
t-test was applied to compare the differences between groups 
regarding myopic condition and SFCT prediction. Linear 
regression and Spearman’s correlation were used to examine 
the relationship between refractive error and foveal detection 
accuracy. Statistical analyses were performed using SPSS 
(version 20). Data were presented as mean±standard deviation. 
Statistical significance was set at a two-tailed P<0.05 for all 
statistical analyses.
RESULTS 
In this study, a total of 53 eyes from participants without 
significant ocular diseases were analyzed. Among them, 
25 were right eyes and 28 were left eyes. The mean age of 
participants was 40.1±10.5 years old. Their average spherical 
equivalent was -5.0±2.84 D, with -3.09±1.46 D in the non-high 
myopia group (n=33) and -8.28±1.20 D in the high myopia 

group (n=20). Each OCT sequence was processed with both 
the LocBscan-3D and LocEN-2D model, and fovea locations 
were automatically predicted. Subsequently, SFCT were 
calculated by the Mask R-CNN model.
Figure 4 illustrated an example of fovea locations as identified 
by different methods. Fovea locations were recorded in a 
coordinate system with x and y axes and different OCT slices. 
Table 1 showed the mean distances between the manually 
identified fovea locations and those predicted by models. 
Totally 51 out of 53 OCT sequences were successfully 
processed by the LocBscan-3D model, with fovea locations 
automatically identified. The mean differences from the 
ophthalmologists’ manually identified values and predicted 
values of the LocBscan-3D model were 12.8 pixels in the 
x-axis, 7.7 pixels in the y-axis, and 0.7 slices (considered 
as the z-axis) as shown in the OCT scan. According to the 

Table 1 The mean distances between the fovea locations labeled by ophthalmologists and those predicted by the 

automatic prediction model                                                                                                                                                         mean±SD

Predicted models x-axis (pixels) y-axis (pixels) z-axis (slices) Overall distancea (μm)
LocBscan-3D (n=51) 12.8±3.7 7.7±1.3 0.7±0.7 170.0±43.0b

LocEN-2D (n=53) 46.8±44.1 34.4±28.8 2.0±3.8 675.9±500.0b

LocBscan-3D: Fovea localization from B-scan OCT image sequence with three-dimensional reconstruction; LocEN-

2D: Fovea localization from two-dimensional en-face OCT image; SD: Standard deviation. aAccording to the machine’s 

settings, each pixel or slice in the x-, y-, and z-axes corresponds to 12, 4, and 66 μm, respectively. After converting pixels 

to lengths in each axis, the distance between manual depiction and automatic detection was calculated accordingly. The 

overall distance represents the of each case. bP<0.01 for the mean distance between the two models.

Figure 3 Illustration of a case using LocBscan-3D model  The 

model utilize the scan from the innermost portion of the retina and 

progressed slice by slice towards the outer portion in order to detect 

the fovea location. As the scan went deeper, the round non-reflective 

area (colored in the figure) became progressively smaller. The fovea 

location was defined as the point at which the non-reflective area 

disappeared, which was detected in the last slice by the model. 

LocBscan-3D: Fovea localization from B-scan OCT image sequence 

with three-dimensional reconstruction; OCT: Optical coherence 

tomography.
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machine’s settings, each pixel or slice in the x-, y-, and z-axes 
corresponds to 12, 4, and 66 μm, respectively. After converting 
pixels to distance values, the overall distance was 170.0 μm. In 
addition, all 53 OCT sequences were processed successfully by 
the LocEN-2D model, and foveal locations were detected. The 
mean discrepancies between the foveal locations predicted by 
the LocEN-2D model and those identified by ophthalmologists 
were 46.8 pixels in the x-axis, 34.4 pixels in the y-axis, and 
2.0 slices in the OCT scan (considered as the z-axis). The 
overall distance was 675.9 μm after converting pixels to the 
corresponding distance values. A significant difference between 
the two models was observed (P<0.01).
When subjects were categorized into non-high myopia and 
high myopia groups, Table 2 displayed the discrepancies 
between manually identified foveal locations and those 
predicted by automatic models. The LocEN-2D model 
exhibited poorer predictive accuracy in the high myopia group 
(529.8 μm in the non-high myopia group and 916.0 μm in 
the high myopia group, P=0.02), whereas the LocBscan-3D 
model revealed similar predictive results between the two 
groups (169.1 μm in the non-high myopia group and 171.5 μm 
in the high myopia group, P=0.85). A regression model was 
conducted to investigate the relationship between myopic 
refraction error and the discrepancies between manually 
identified and model-predicted locations. Figure 5A presents 
the results of the LocEN-2D model (R2=0.2291), while 
Figure 5B displays the results of the LocBscan-3D model 
(R2=0.0017). The LocBscan-3D model exhibited steady 
predictive results, unaffected by differences in refractive status.

Table 2 Comparison of non-high myopia group and high myopia 

group

Predicted models Non-high myopia High myopia
LocBscan-3D

No. of eyes 33 20
Mean SE (diopter) -3.86±1.16 -8.28±1.20
Distancea (μm) 169.1±41.6 171.5±45.0
Pb 0.85

LocEN-2D
No. eyes 31 20
Mean SE (diopter) -3.09±1.46 -8.28±1.20
Distancea  (μm) 529.9±345.0 916.9±608.5
Pb 0.02

SE: Spherical equivalents; LocBscan-3D: Fovea localization from 

B-scan OCT image sequence with three-dimensional reconstruction; 

LocEN-2D: Fovea localization from two-dimensional en-face OCT 

image; OCT: Optical coherence tomography. aThe distances between 

the fovea locations labeled by ophthalmologists and those predicted 

by the automatic prediction model. bComparison of the distances 

between the results from the non-high myopia group and the high 

myopia group.

Figure 4 The different methods used to define the fovea location  

The fovea site labelled by ophthalmologist is represents by the red 

point, the blue point represents the fovea location predicted by 

LocEN-2D model, and the pink point represents the fovea location 

predicted by LocBscan-3D model. The red shaded area represents 

the position of the optic disc detected by the Mask R-CNN model. 

The green arrow indicates the OCT slice in which the ophthalmologist 

labeled the fovea. LocBscan-3D: Fovea localization from B-scan OCT 

image sequence with three-dimensional reconstruction; LocEN-2D: 

Fovea localization from two-dimensional en-face OCT image; OCT: 

Optical coherence tomography; Mask R-CNN: Mask region-based 

convolutional neural network.

Figure 5 The relationship between myopic refraction error and 

the discrepancies between manually identified and model-

predicted locations  A: The result of LocEN-2D model; B: The result 

of LobBscan-3D model. LocBscan-3D: Fovea localization from B-scan 

OCT image sequence with three-dimensional reconstruction; LocEN-

2D: Fovea localization from two-dimensional en-face OCT image; 

OCT: Optical coherence tomography.
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Table 3 showed SFCT measurements obtained both from the 
predicted models generated by the Mask R-CNN model and 
manual delineation by physicians. The mean SFCT labeled by 
physicians was 216.8±48.8 μm, with no significant differences 
observed in SFCT predicted by the Mask R-CNN model 
across various foveal locations identified by different methods 
[206.8±43.4 μm (P=0.49) for foveae predicted by LocBscan-
3D model, 205.3±43.8 μm (P=0.23) for foveae predicted by 
LocEN-2D model and 207.8±47.4 μm (P=0.35) for foveae 
labeled by physicians].
DISCUSSION
Our principal findings of this study are the following: 1) 
LocBscan-3D model predicted the foveal location accurately, 
regardless of high myopia or not; 2) LocEN-2D model 
exhibited a high detection rate for locating the optic disc and 
fovea, although it demonstrated lower accuracy, especially 
in high myopia; 3) Combining the Mask R-CNN model 
for choroid detection and automatic foveal detection model 
together, comprehensive and precise predict SFCT in the OCT 
images was demonstrated.
In our study, the LocBscan-3D model successfully analyzed 
around 96% of the OCT sequences (51 out of 53 cases). 
Regarding the two cases that failed to be analyzed, the reason 
is likely due to oblique and not flat macula in the OCT scans. 
On the other hand, using the LocEN-2D model, although 
the accuracy of prediction in foveal location was lower than 
LocBscan-3D, all 53 cases were processed because of the 
qualified and comprehensive predictions observed in the 
Mask R-CNN model for optic disc detection. This allowed 
for the subsequent prediction of the corresponding foveal 
center position. Although there were slight discrepancies in 
foveal position between manual labeling and predictions by 
either the LocBscan-3D model or the LocEN-2D model, the 
predicted SFCT did not exhibit significant differences. This 
could be explained by the fact that the choroid contour tends 
to be relatively continuous and smooth. Therefore, the overall 
smoothness of the choroid contour may mitigate the impact of 
less precise foveal localization on SFCT measurements. 
The automatic detection model for the fovea and SFCT in our 
study is robust and has the potential to be applied in large-

scale population screening. Changes in choroidal thickness 
are related to systemic diseases. For example, a significant 
decrease in choroidal thickness is known to precede clinical 
symptoms in diabetic retinopathy[30-31]. Early complications 
of hypertension are also detected by changes in choroidal 
thickness[10,32-33]. By utilizing the model to detect changes in 
choroid thickness, clinicians may be able to identify subtle 
changes in ocular health and to more effectively monitor 
disease progress, leading to better management strategies, 
providing prompt intervention and probably improving clinical 
outcomes.
To develop an automatic detection model for the SFCT, ideal 
fovea identification is the first and foremost task, followed by 
precise segmentation of the choroidal layer. Several studies 
have described methods on automatic detection of the fovea. 
Liefers et al[34] trained a CNN model for fovea detection based 
on a set of 781 OCT scans, and reported a detection rate of 
around 96%, which is comparable to the performance of 
our models. Hussain et al[35] described a standard deviation 
profiling method that had extracted features from the inner 
limiting membrane, and the fovea was detected subsequently 
using a rule-based approach, but with difficulty in dealing with 
non-intact foveal layer. Limitations of these previous studies 
included that limited conditions were confined in the training 
model, and some methods were unable to organize information 
across multiple B-scans. By constructing a 3D-structure map 
from multiple B-scans in OCT imaging, the fovea location can 
be identified more intuitively. This allows for the detection 
of the small central depression, known as the anatomical 
definition of the fovea. Consequently, our LocBscan-3D model 
accurately predicted the fovea location in individuals with a 
healthy macula. Thus, our method demonstrated reliable and 
precise results for automatic fovea detection.
Regarding choroid layer detection, various studies have 
been mentioned in the introduction section. Previous 
research employing Mask R-CNN has demonstrated a dice 
similarity coefficient (DSC) of approximately 95% between 
automatically and manually segmented regions, with an 
average error ranging from 4 to 5 pixels. In comparison, the 
group-wise context selection network by Li et al[21] achieved 

Table 3 SFCT measured by different methods

Items Predicted modelsa Referenceb

Identification of fovea locations Manuallyc LocBscan-3D LocEN-2D Manuallyc

SFCT (μm) 207.8±47.4 206.8±43.4 205.3±43.8 216.8±48.8
Pd 0.35 0.49 0.23 -

SFCT: Subfoveal choroidal thickness; LocBscan-3D: Fovea localization from B-scan OCT image sequence with three-dimensional reconstruction; 

LocEN-2D: Fovea localization from two-dimensional en-face OCT image. aThe choroidal boundary and thickness were detected using a mask 

region-based convolutional neural network model; bThe choroidal boundary and thickness were delineated by ophthalmologists; cThe foveal 

locations were identified by ophthalmologists; dComparison with reference data.

Automatic detection for choroid and fovea



1769

Int J Ophthalmol,    Vol. 17,    No. 10,  Oct. 18,  2024     www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

a DSC of around 93%, requiring swept-source OCT, which is 
less commonly available for screening purposes. Additionally, 
compared to models introduced by Yan et al[22], the average 
error ranged from 4 to 12 pixels. Another widely used neural 
network for medical image segmentation, the U-shape 
convolutional network, reported a predictive error of 
21.84 μm with a DSC of 92.8%. However, it didn’t yield 
superior results compared to Mask R-CNN, which achieved a 
DSC of around 95% with an error of 13.75 μm in a previous 
study and less than 10 μm in the current study. Considering the 
above statements, the application of Mask R-CNN for choroid 
segmentation appears to be optimal.
Relevant 3D reconstruction techniques have been reported. 
Xu et al[36] utilized deep CNN and 3D morphometry to 
differentiate between normal retina, subretinal fluid, and 
cystoid macular edema. The results showed that the DSC of 
segmentation reached 0.78 for cystoid macular edema, 0.82 
for subretinal fluid, and 0.95 for retina segmentation. Huang 
et al[37] compared the 3D choroidal vascularity index between 
fellow eyes of angle-closure glaucoma and the eyes of normal 
controls, which showed slightly higher index and thickness 
in the fellow eye of glaucoma. In comparison with our study, 
choroid segmentation was not performed in Xu et al’s[36] 
publication, and there was no comparable manually labeled 
reference in Huang et al’s[37] report. Hence, our model, which 
combines 3D reconstruction in the retina and Mask R-CNN for 
choroid detection, still retains novelty and significance.
The LocBscan-3D model may encounter difficulty in detecting 
the fovea in cases where contour of the central depression 
is obscure. This could be due to conditions such as center-
involved macular edema, scarring, epiretinal membrane leading 
to traction, or presence of a non-flat macula, including posterior 
staphyloma or other situations involving a tilted macula. In 
order to overcome this challenge, the alternative approach of 
using a LocEN-2D model can be employed for the ability of 
comprehensive detection. The LocEN-2D model can provide 
acceptable results and can serve as a fallback option when the 
LocBscan-3D model fails to detect the fovea in a minority of 
cases. As the Mask R-CNN model can successfully predict the 
optic disc in almost 100% of cases, a mathematical method 
based on distance can be used to determine the fovea location. 
By combining these two models, strengths of each model can 
be leveraged. For example, priority should be given to utilizing 
the LocBscan-3D model, taking advantage of its accurate 
predictions of both fovea and SFCT. When the LocBscan-3D 
model fails to detect the fovea, possibly due to factors such as 
an obscured central depression contour, the LocEN-2D model 
can be employed as an alternative solution. While the LocEN-
2D model may not provide fovea predictions as precise as 
desired, the discrepancies in SFCT predictions are negligible. 

Furthermore, it consistently locates the fovea, rendering it a 
reliable fallback option. By harnessing the strengths of both 
models, comprehensive SFCT detection can be achieved. In 
determining the relative position between the optic disc and 
fovea, we incorporated findings from several previous studies. 
The American Academy of Ophthalmology[27] and Orth et al[38] 
reported that the fovea was located approximately 4.0 mm 
temporally and 0.8 mm inferiorly from the center of the optic 
disc. Williams and Wilkinson[28] reported approximately 
4.91 mm being the average distance from the optic nerve head 
to the fovea center. Klaus reported a mean angle between the 
center of the fovea and the optic disc from the horizon of -5.6 
degrees[29]. After incorporating the above findings, our LocEN-
2D model considered the relative distance from the optic disc 
and used that to determine the fovea location.
The LocBscan-3D model utilizes the anatomical definition and 
features of the foveal depression, allowing for accurate fovea 
prediction. On the other hand, the LocEN-2D model exhibits 
larger prediction deviations and variations, particularly in 
cases with high myopia. By reviewing previous publications, 
variations in the relative position between the optic disc 
and fovea exist across reported studies[28-29,39-41]. Significant 
inter-individual variations in the normal position of the 
optic disc and fovea are also proposed[40-41]. Multiple factors 
contribute to the variations in disc-foveal distance, including 
pathological conditions, and other parameters of the normal 
population, such as axial length, age, race, myopia status, 
and glaucomatous conditions[39-41]. Therefore, it should 
be cautious when using disc-fovea distance to estimate or 
investigate macular conditions. In summary, we suggest that 
the LocBscan-3D prediction model should be the primary 
approach, with the LocEN-2D model serving as an alternative 
option. 
Our study has some limitations. First, the LocBscan-3D model 
is only reliable and applicable when the fovea has a normal 
contour and the macula is flat. It may face challenges in 
detecting the fovea in pathological conditions such as posterior 
staphyloma, chorioretinal coloboma, and macula pucker. 
Second, although we considered several previous studies to 
define the fovea location based on relative distance from the 
optic disc in the LocEN-2D model, fovea location may not 
be precisely determined particularly in populations with high 
myopia. This could be related to factors such as differences 
in axial length, refractive status, racial differences, and other 
systemic conditions. Our study used enhanced depth imaging 
OCT scans with as many as 97 slices. Whereas in real-world 
practice, fewer slices may be obtained in macula OCT scans 
and the scanning area may be shallower. Such factors limit the 
robustness and comprehensiveness of the LocBscan-3D model. 
While the LocBscan-3D model may not accurately predict 
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certain macular pathologies, its value remains significant 
given the predominance of normal foveal contours within the 
general population. Our model holds potential for practical 
application in population screening, primarily due to the 
high prevalence of normal foveal contours. Additionally, 
the model could operate based on exclusion criteria, which 
include: 1) failure of the LocBscan-3D model to predict the 
fovea, 2) significant discrepancy in fovea location between 
the LocEN-2D and LocBscan-3D models, 3) prediction of 
SFCT outside the normal range. Under these circumstances, 
if macular pathologies such as macular pucker or edema are 
present, leading to inaccurate or failed predictions by the 3D 
model, such cases can be selectively identified for cautious 
review or detailed examination. Moreover, previous studies 
have demonstrated that in the early stages of hypertension 
or diabetes mellitus, choroidal thickness is thinner compared 
to the normal population, even in the absence of clinically 
detectable maculopathy or preclinical retinopathy[31-33]. By 
detecting subtle abnormalities in SFCT in patients with an 
otherwise grossly normal macula, early management or 
further investigation can be initiated. In addition, it would 
be intriguing to investigate the relationship between B-scan 
OCT image sequence and en-face OCT or fundus images, as 
the relative location of the fovea to the optic disc may differ 
depending on factors such as axial length, refractive error, 
age, and ethnicity. By applying LocBscan-3D model for fovea 
detection and combining with en-face OCT image analysis, 
new reliable rules for the relative position of the optic disc 
and fovea under various conditions could potentially be 
established.
In conclusion, our LocBscan-3D model demonstrated accurate 
prediction of the foveal location, while the LocEN-2D model 
can serve as an alternative when the LocBscan-3D model fails 
to detect the fovea. The Mask R-CNN model also provided 
precise estimations of the SFCT. In order to achieve further 
enhancement, we look forward to investigations in the future 
aimed at 1) addressing fovea prediction on pathologic macula 
without normal contour, 2) determining the valid rules for 
the relative distance between the optic disc and fovea under 
different conditions, 3) applying in general population 
screening.
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