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Abstract 
● AIM: To construct an in vitro model of oxygen-glucose 
deprivation/reperfusion (OGD/R) induced injury to the 
optic nerve and to study the oxidative damage mechanism 
of ischemia-reperfusion (I/R) injury in 661W cells and the 
protective effect of ginsenoside Rg1.
● METHODS: The 661W cells were treated with different 
concentrations of Na2S2O4 to establish OGD/R model 
in vitro. Apoptosis, intracellular reactive oxygen species 
(ROS) levels and superoxide dismutase (SOD) levels were 
measured at different time points during the reperfusion 
injury process. The injury model was pretreated with graded 
concentrations of ginsenoside Rg1. Real-time polymerase 
chain reaction (PCR) was used to measure the expression 
levels of cytochrome C (cyt C)/B-cell lymphoma-2 (Bcl2)/
Bcl2 associated protein X (Bax), heme oxygenase-1 (HO-1), 
caspase9, nuclear factor erythroid 2-related factor 2 (nrf2), 
kelch-like ECH-associated protein 1 (keap1) and other 
genes. Western blot was used to detect the expression of 
nrf2, phosphorylated nrf2 (pnrf2) and keap1 protein levels.
● RESULTS: Compared to the untreated group, the 
cell activity of 661W cells treated with Na2S2O4 for 6 and 
8h decreased (P<0.01). Additionally, the ROS content 
increased and SOD levels decreased significantly (P<0.01). 
In contrast, treatment with ginsenoside Rg1 reversed the 
cell viability and SOD levels in comparison to the Na2S2O4 
treated group (P<0.01). Moreover, Rg1 reduced the levels of 
caspase3, caspase9, and cytC, while increasing the Bcl2/

Bax level. These differences were all statistically significant 
(P<0.05). Western blot analysis showed no significant 
difference in the protein expression levels of keap1 and nrf2 
with Rg1 treatment, however, Rg1 significantly increased 
the ratio of pnrf2/nrf2 protein expression compared to the 
Na2S2O4 treated group (P<0.001).
● CONCLUSION: The OGD/R process is induced in 661W 
cells using Na2S2O4. Rg1 inhibits OGD/R-induced oxidative 
damage and alleviates the extent of apoptosis in 661W cells 
through the keap1/nrf2 pathway. These results suggest a 
potential protective effect of Rg1 against retinal I/R injury.
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INTRODUCTION 

I t is generally accepted that ischaemia-reperfusion (I/R)-
induced tissue damage is not only related to the degree of 

reduced blood flow, but also to intracellular calcium overload, 
oxidative stress, inflammatory responses, neurotoxicity of 
excitatory amino acids, excessive nitric oxide synthesis, and 
disturbances in energy metabolism[1], ultimately causing tissue 
damage and neuronal cell necrosis/apoptosis with the process 
causing an increase in reactive oxygen species (ROS), including 
superoxide (O2-), hydrogen peroxide (H2O2) and hydroxyl 
radicals, leading to DNA fracture, lipid peroxidation and 
protein inactivation[2-3].
The mechanisms by which I/R injury to tissue occurs are 
complex and include primary injury in the early stages of 
ischaemia and secondary injury following reperfusion[4], 
which is further exacerbated by I/R caused by the restoration 
of tissue blood supply after ischaemia has occurred. It is a 
common cause of visual impairment and blindness in all forms 
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of ischaemic retinopathy (including central retinal artery 
occlusion, retinal vein occlusion, glaucoma, traumatic optic 
neuropathy (TON) and diabetic retinopathy)[5-6]. However, to 
date, no definitive neuroprotective treatment has been found 
to protect ganglion cells and photoreceptors in many optic 
nerve diseases, including glaucoma and TON, and there are no 
clinically approved drugs that are effective in rescuing retinal 
neurons in ischaemic retinopathy.
Ginsenoside Rg1 is one of the most important active ingredients 
in ginseng extracts, with a wide range of physiological 
activities and important medicinal values[7-8]. Rg1 has been 
found to have protective effects on various tissues and organs 
in the human body, with anti-apoptotic, anti-inflammatory and 
anti-aging effects. Previous studies have shown that Rg1 exerts 
various pharmacological effects through various mechanisms 
such as inhibition of apoptosis-related protein levels, down-
regulation of inflammatory mediators and anti-oxidation, 
effectively exerting organ-protective effects against I/R induced 
damage[9-10]. Some studies have reported that Rg1 can reduce 
the release of reactive oxygen stress and lactate dehydrogenase 
in a hypoxia-reperfusion model of cardiomyocytes, thereby 
improving the ability of cardiomyocytes to resist I/R injury. 
However, the role of ginsenoside Rg1 in retinal ischemia or 
retinal I/R needs to be further investigated[11].
MATERIALS AND METHODS
Cell Cultures  Although it would be ideal to use a specific 
retinal ganglion cells (RGC) cell line to explain internal retinal 
degeneration in vivo, no specific RGC line currently exists 
in ophthalmology. Cell 661W line is thought to be a mouse 
immortalized cone photoreceptor cell line with multiple 
characteristics of retinal ganglion precursor-like cells, and this 
cell line has been widely used to study the characteristics of 
retinal ganglion cells; therefore, for our in vitro studies we used 
the murine retinal neuronal cell line 661W cells. Cells were 
cultured in Dulbecco’s Modified Eagle’s medium (DMEM) 
containing 10% fetal bovine serum (FBS; Gibco, 98 Thermo 
Fisher Scientific, USA) and 1% streptomycin-penicillin 
(HyClone, GE Healthcare Life 99 Science, USA). Na2S2O4 
(Sodium dithionite, 104 Macklin, China) was encapsulated and 
stored in a dry environment and dissolved in 1×phosphate 
buffer saline (PBS) as a master mix (0.5 mol/L) and then 
added in a gradient of different concentrations. Ginsenoside 
Rg1 was dissolved in dimethylsulfoxide (DMSO; MP 106 
Biomedicals, USA) and stored in frozen portions, then added 
to Petri dishes in a concentration gradient.
Cellular Viability Analysis  Normally cultured 661W cells, cells 
cultured with ginsenoside Rg1, and cells treated with I/R were 
trypsinized and centrifuged. After resuspension, cells were placed 
in a MUSE Annexin V & Dead Cell Kit (Merck Millipore, 
Germany) and incubated for 20min at room temperature in the 

dark. The cell suspension was then well mixed and run on a 
MUSE cell analyser (Merck Millipore, Germany).
Cellular Oxidative Stress Assay and SOD Assay  Cellular 
oxidative stress assays were performed using the MUSE 
Oxidative Stress Kit (Merck Millipore, Germany): cell samples 
were collected from culture dishes and prepared at 1×106 cells/mL
in 1× buffer. Subsequently, 10 μL of cell samples were 
incubated with 190 μL of Muse Oxidative Stress working 
solution for 30min at 37°C in the dark and run on a Muse Cell 
Analyzer (Merck Millipore, Germany).
Quantitative Real-time Polymerase Chain Reaction  Total 
cellular RNA was extracted using Trizol reagent (Invitrogen, 
USA) and nucleic acid quality control was performed to 
ensure the quality of RNA extraction. The cDNA was then 
transcribed using Prime Script™ RT reagent Kit and gDNA 
Eraser (TaKaRa, Japan). Real-time polymerase chain reaction 
(PCR) was performed using SYBR Green Master Kit (Roche, 
Switzerland) and recorded using the LightCycler 96 System. 
β-actin was used as an endogenous control. The list of DNA 
primers sequences is showed in Table 1.
Western Blotting  After treatment the cells were harvested 
and cellular proteins were isolated using standard 
procedures. Proteins were separated by sodium dodecyl 
sulfate polyacrylamide gel electrophoresis and transferred to 
polyvinylidene difluoride membranes (Millipore, Billerica, 
MA, USA). Protein-attached membranes were closed with 
5% skimmed milk for 60min and then incubated overnight at 
4°C with the following primary antibodies: rabbit anti-nuclear 
factor erythroid 2-related factor 2 (nrf2) antibody (BIOSS, 
China), rabbit anti-phospho-nrf2 (Ser40) antibody (BIOSS, 
China), rabbit anti-β-actin rabbit mAb (CST, USA). Rabbit 
anti-kelch-like ECH-associated protein 1 (keap1) antibody 
(BIOSS, China).
Statistical Analysis  All experiments were repeated at 
least three times. Each experimental group contained three 
independent cell samples. Statistical analysis was performed 
using IBM SPSS Statistics 22 software (IBM, USA). Data 
were expressed as mean±standard deviation (SD) and 
significance was determined by t-test or Bonferroni corrected 
one-way ANOVA. Graphs were plotted using GraphPad 
Prism 6 software (GraphPad software Inc, USA). P<0.05 was 
considered a statistically significant difference. GraphPad 
Prism 8 software (GraphPad Software Inc., USA) was used for 
157 graphical plot.
RESULTS
Oxygen-Glucose Deprivation Induction of Cell Death 
in 661W Cells Using Na2S2O4 in Vitro  To investigate the 
process of in vitro ischemia and hypoxia, we treated 661W 
cells for 50min using different concentrations (0, 2.5, 5.0, 
10.0, 15.0, 20.0 mmol/L) of sodium bisulfite dissolved in PBS 
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to simulate the oxygen-glucose deprivation (OGD) process 
(Figure 1A, 1B). Flow cytometric detection of the degree of 
cellular activity showed that cellular activity began to decrease 
at 10 mmol/L (67.0%±0.75%) and decreased in a waterfall 
fashion when the concentration was increased to 15 mmol/L 
(45.6%±2.78%) compared to the 10 mmol/L concentration. 
The cell activity decreased to 17.3%±9.67% when the 
concentration was increased to 15 mmol/L, and the cell debris 
increased significantly, making it impossible to complete the 
subsequent experiments.
We continued to investigate the drug toxicity of ginsenoside 
Rg1 on 661W cells (Figure 1C, 1D), as the drug concentration of 
ginsenoside Rg1 was increased (0, 20, 40, 60, 80, 100 μmol/L),
there was no significant change in the activity of 661W 
cells in the low concentration drug group (0-60 μmol/L) 

(92.6%±0.86%, 90.4%±1.42%, 89.9%±0.50%, 92.7%±0.42%), 
and the cellular activity decreased when the drug concentration 
was continued to increase (80 μmol/L 80.5%±2.20%, 100 μmol/L 
63.4%±2.10%).The drug concentrations of 60 and 30 μmol/L 
were selected as the 661W cellular drug groups for the in vitro 
simulation process of 661W cellular I/R.
Effects of Different Doses of Ginsenoside Rg1 on Cell 
Viability During OGD/R Process  On the previous basis, a 
simulated I/R process was performed, i.e. 15 mmol/L sodium 
hyposulphite treatment for 50min followed by the addition of 
serum-free medium (DMEM) for 0, 1, 2, 4, 6 and 8h. During 
this process, the cell activity underwent a process of first 
increase (0-4h) and then decrease (6 and 8h), and at the 6h 
stage, the cell activity decreased to 54.9%±1.76%, and the 
time was extended to the 8h stage, where the activity further 
decreased to 48.9%±1.59% (Figure 1E, 1F).
After constructing a stable 661W cell I/R model, in order to 
investigate the effect of ginsenoside Rg1 drug intervention, 
we pretreated 661W cells with gradient concentrations 
(0, 30, 60 μmol/L), specifically by adding the drug after 
cell apposition and incubating the cells with ginsenoside 
Rg1 0, 30, 60 μmol/L for 24h. When the cell density grew to 
70%-80% of the optimal. The oxygen-glucose deprivation/
reperfusion (OGD/R) procedure was carried out at 6 and 8h 
when the apoptosis rate increased significantly, and it was found 
that as the concentration of ginsenoside Rg1 increased, the 
degree of apoptosis improved significantly (60.1%±1.14%, 
70.1%±2.22%), and after 8h of damage, the drug intervention 
also improved significantly (60.3%±1.57%, 68.3%±2.19%). 
Based on these results, it was shown that ginsenoside Rg1 was 
able to delay the loss of cellular activity during I/R in 661W cells.
Effects of Different Doses of Ginsenoside Rg1 On Oxidative 
Stress during OGD/R Process  To further explore the 
molecular effects of Rg1 on OGD/R in 661W cells in vitro, 
we used ROS and superoxide dismutase (SOD) to detect 
cellular redox status (Figure 2A). The results revealed a 
significant increase in the ratio of ROS(+) cells (55.2%±0.7%, 
70.4%±0.8%) at the 6 and 8h stage of OGD/R compared 
to cells that had not been subjected to OGD/R treatment 
(3.5%±0.8%). However, the addition of Rg1 treatment resulted 
in a significant decrease in all ROS(+) cells, with the ratio 
decreasing to 50.1%±0.9% and 45.3%±1.1% at the 6h stage 
and from 70.4%±0.8% to 55.0%±1.4% and 48.2%±1.4% in the 
8h (Figure 2B). In contrast, in the standardized SOD content 
assay, intracellular SOD increased compared to the control as 
the OGD/R 6, 8h phase progressed, while the administration 
of gradient concentrations of the drug was able to increase the 
relative intracellular SOD content (Figure 2C). The results 
indicate that Rg1 has an inhibitory effect on oxidative stress in 
661W cells under in vitro conditions.

Table 1 List of DNA primers sequences

Gene Nucleotide sequence (5’-3’) Product length (bp)
GAPDH 120

F GAGTCCACTGGCGTCTTCAC
R GTTCACACCCATGACGAACA

KEAP 1 245
F TGCCCCTGTGGTCAAAGTG
R GGTTCGGTTACCGTCCTGC

HO-1 100
F AAGCCGAGAATGCTGAGTTCA
R GCCGTGTAGATATGGTACAAGGA

NRF2 140
F TCTTGGAGTAAGTCGAGAAGTGT
R GTTGAAACTGAGCGAAAAAGGC

P53 173
R CGACTACAGTTAGGGGGCAC
F GGAGGAAGTAGTTTCCATAAGCCT

BCL2 169
F CAGCCAGGAGAAATCAAACAGAG
R GGAGAGCGTCAACAGGGAGA

BAX 61
F CCAAGAAGCTGAGCGAGTGTCT
R AGCTCCATATTGCTGTCCAGTTC

CYTC 107
F CCAAATCTCCACGGTCTGTTC
R ATCAGGGTATCCTCTCCCCAG

NQO1 87
F GCGAGAAGAGCCCTGATTGTACTG
R TCTCAAACCAGCCTTTCAGAATGG

GCLC 102
F ACATCTACCACGCAGTCAAGGACC
R CTCAAGAACATCGCCTCCATTCAG

PTGS2 74
F TGAGCAACTATTCCAAACCAGC
R GCACGTAGTCTTCGATCACTATC

F: Forward; R: Reverse.
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Effects of Ginsenoside Rg1 on the Expression of Keap1/
Nrf2/HO-1 during OGD/R in 661W Cells  Further molecular 
experiments were conducted to elucidate the changes in drug 
regulation in I/R injury in 661W cells. First, the expression 
of apoptosis-related expression factors [cyt C, B-cell 
lymphoma-2 (Bcl2)/Bcl2 associated protein X (Bax), caspase3, 
caspase9] was explored, as shown in Figure 3. Caspase 9 were 
differentially up-regulated, and the key point of apoptosis 
regulation, Bcl2/Bax, would be significantly reduced, 
suggesting that significant apoptotic processes occurred in 
661W cells during I/R, and that administration of different 
gradient concentrations of drugs could inhibit the expression of 
apoptotic genes (cyt C, caspase3, caspase9) and regulate Bcl2/
Bax to protect cells from apoptosis.
Keap1/nrf2 is thought to be an important part of regulating 
nrf2 expression, and P53 and heme oxygenase-1 (HO-1), 

as important influential factors upstream and downstream 
of its regulation, are closely related to oxidative damage. In 
order to further investigate the related molecular changes, 
we also examined the changes of P53, keap1/nrf2 and HO-1 
expression in 661W cells under the conditions of ctrl, ctrl+Rg1 
60 μmol/L, OGD/R 6h, OGD/R 6h+Rg1 30 μmol/L, OGD/R 6h 
+Rg1 60 μmol/L, OGD/R 8h, OGD/R 8h+Rg1 30 μmol/L
and OGD/R 8h+Rg1 60 μmol/L. The intermediate nrf2 
molecule level was upregulated. However, keap1 was not 
significantly altered as a chaperone molecule in terms of gene 
and protein expression levels, and the mRNA expression 
level of total nrf2 was not significantly altered, whereas 
the level of phosphorylated nrf2 (pnrf2), which functions 
at the protein level, was altered, and elevated after drug 
intervention. Further quantitative analysis of pnrf2/nrf2 levels 
also revealed a significant increase in the pnrf2 ratio (Figure 

Figure 1 Establishment of retinal ischemia/reperfusion in vitro A, B: Flow analysis suggested a significant increase in the degree of apoptosis 

in 661W cells treated with increasing concentrations of sodium bisulfite for 50min; C, D: Effect of different ginsenoside Rg1 concentrations (0, 

20, 40, 60, 80, and 100 umol/L) on the degree of apoptosis in 661W cells; E, F: Flow cytometric analysis of 661W cells showed that the degree 

of apoptosis decreased and then increased after the oxygen-glucose deprivation/reperfusion (OGD/R) process and decreased with increasing 

concentrations of ginsenoside Rg1. Comparison of apoptosis rates of cells with different concentrations of Rg1 at the 6 and 8h stages of OGD/R, 
aP<0.05, bP<0.01, cP<0.001.
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4C-4E). It is suggested that 661W cellular processes undergo 
drug-regulated phosphorylation into the nucleus to regulate 
downstream gene expression, exerting a cytoprotective effect. 
Ginsenoside Rg1 administration significantly reduced the 
upstream P53 expression level (Figure 4K) but increased the 
downstream HO-1 expression level (Figure 4G), prostaglandin-
endoperoxide synthase 2 (PTGS2), NADPH: quinone 
oxidoreductase 1 (NQO1) and gamma-glutamate cysteine 
ligase catalytic subunit (GCLC) did not participate in 
the overall protective effect of ginsenoside Rg1 (Figure 
4H-4J).
DISCUSSION
In constructing models of I/R, previous studies have reported 
the use of triple gas medium to create an ischaemic hypoxic 
environment for cells[12-13], and phosphate buffer using sodium 

bisulphite to simulate ischaemia-hypoxia, the latter of which 
has been reported in the literature to deprive the cellular 
surroundings of oxygen and maintain a relatively hypoxic 
environment[14-15]. In this study, 661W cells exposed to OGD 
showed a decrease in cellular activity (45.1%±3.06%), and 
although there was an increase in cellular activity early on 
when reperfusion conditions were given, there was soon a 
trend towards a decrease at 6 and 8h. The OGD/R process 
disturbs the oxidative/antioxidative balance in the cells. The 
addition of Rg1 pretreatment significantly reduced ROS levels 
in 661W cells that had undergone OGD/R injury compared to 
the same stage, while providing an assay for SOD levels, it was 
also found that injury during this process was accompanied by 
an increase in SOD, suggesting that oxidative damage during 
cellular OGD stimulates the production of reductants, while 

Figure 2 Oxidative stress was restricted by Rg1 treatments in 661W cells  Ginsenoside Rg1 significantly inhibited the ROS levels of 661W cells 

at different oxygen-glucose deprivation/reperfusion (OGD/R) periods and elevated the SOD content accordingly, showing a concentration 

effect. Compared with OGD/R-, Rg1-, aP<0.05, bP<0.01, cP<0.001. ROS: Reactive oxygen species; SOD: Superoxide dismutase; OGD/R: Oxygen-

glucose deprivation/reperfusion.

Figure 3 Ginsenoside Rg1 inhibited the apoptotic phenotype of OGD/R in 661W cells  661W cells showed increased expression of caspase3, 

caspase9 and cyt C during OGD/R, while Rg1 reversed this process. Rg1 alleviated the reduced Bcl2/Bax ratio under OGD/R. Comparison with 

OGD/R-, Rg1-, aP<0.05, bP<0.01, cP<0.001. OGD/R: Oxygen-glucose deprivation/reperfusion.
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the addition of ginsenoside Rg1 increased the accumulation of 
reductants.
661W cells, the current line of retinal cone cells for the study 
of mouse immortalisation, have a variety of characteristics 
of retinal ganglion precursor-like cells[16-17], and this cell line 
has been widely used to study the characteristics of RGC and 
is currently the most commonly used and only recognised 
retinal photoreceptor cell line[18]. As cells of neural origin, 
photoreceptors produce electrical signals that are transmitted 
to RGC via bipolar cells, and its state also influences RGC 
changes in I/R injury[17]. To investigate this I/R optic nerve 
injury this study used a cell line of 661W cells.
During retinal I/R, firstly blood flow failure in the body 
damages the circulatory system and subsequent vascular 
obstruction leading to primary ischaemia[18-19]. In the absence 
of nutrient supply, tissues are plunged into hypoxia, nutrient 
disturbance, calcium in-flow and accumulation of metabolites. 
Due to the microvascular system of the ocular retina leading 
to late reconstitution of circulation, late reperfusion process, 
due to the low concentration of antioxidants in the ischaemic 
cells[20], the production of ROS also increases and accumulates, 
and the imbalance of oxygen and nutrients in ischaemic cells 
brought about by reperfusion leads to a build-up of ROS, 
which in turn damages cellular structures[21]. Previous studies 
have shown that ROS-induced oxidative stress is the key to 
the pathophysiological mechanisms associated with retinal I/
R injury[19]. In this study, ROS and SOD were used to detect 

the redox status of cells. The results revealed a significant 
increase in the ratio of ROS(+) cells at the OGD/R 6, 8h stage. 
However the addition of Rg1 treatment resulted in a significant 
decrease in both ROS(+) cells. In contrast, in the standardized 
SOD content assay, as the OGD/R 6, 8h phase proceeded, 
intracellular SOD increased compared to the control group 
giving gradient concentrations of the drug was able to increase 
the relative intracellular SOD content. The results indicate that 
Rg1 has some inhibitory effect on oxidative stress in 661W 
cells under in vitro conditions.
Rg1 is one of the most important active ingredients in ginseng 
extracts and has a wealth of medicinal value and physiological 
activity[22-23]. In recent years, there is increasing evidence 
that ginsenoside Rg1 plays an important role in neurological, 
cardiovascular and hepatic studies[24-25]. Previous reports 
have found that ginsenoside Rg1 can exert estrogenic effects 
through activation of the estrogen receptor (ERα), upregulate 
the expression of Yes-associated protein (YAP), and reduce 
oxidative stress damage in mouse liver cells based on a mouse 
model of liver I/R injury[26-27]. In the case of neurodegenerative 
diseases, ginsenosides have been shown to counteract the 
apoptotic process in neuronal cells by inhibiting oxidative 
damage. However, the protective effect of these drugs on the 
retina is less reported. In this study, we simulated the OGD/
R damage process in 661W cell line in vitro and investigated 
the protective effect of Rg1. The results showed that apoptosis 
was increased and Rg1 pretreatment had a protective effect on 

Figure 4 Rg1 activates the keap1/nrf2/HO-1 pathway of OGD/R in 661W cells  A: Changes in nrf2 mRNA levels were not significant during 

OGD/R; B, C, D: Rg1 treatment of 661W cells increased protein levels of nrf2 in OGD/R as well as significantly increased the pnrf2/nrf2 ratio; C, 

E, F: Keap1 was not significantly altered during OGD/R in 661W cells; G, H, I, J: Ginsenoside Rg1 up-regulated expression of HO-1, PTGS2, NQO1 

and GCLC during OGD/R in 661W cells; K: Rg1 treatment of 661W cells inhibited P53 expression during OGD/R. aP<0.05, bP<0.01, cP<0.001. 

OGD/R: Oxygen-glucose deprivation/reperfusion.
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OGD/R injury in 661W cells, and that the protective effect of 
Rg1 may be related to affecting downstream cytoprotective 
factors through the keap1/nrf2 pathway, improving cellular 
oxidative stress levels, and interacting with the P53-mediated 
apoptotic pathway.
Nrf2 is a transcription factor that is highly sensitive to redox 
changes and is responsible for promoting the expression 
of antioxidant genes in response to oxidative damage[28-29]. 
Under normal biological conditions, nrf2 binds to keap1 while 
limiting its ability to bind to antioxidant-associated elements 
(ARE)[30]. However, during oxidative stress events, nrf2 is 
released from keap1, degraded and bound to ARE, thereby 
activating nrf2 target genes, such as NQO1 and HO-1, 
to exert their inhibitory capacity against pro-inflammatory 
mediators[31-32]. In our study, we found that the keap1/nrf2/
HO-1 pathway plays an important role in the protection of 
661W cells from I/R injury, and the addition of ginsenoside 
Rg1 could regulate the phosphorylation process of nrf2, up-
regulate its binding to ARE in the nucleus during antioxidant 
reperfusion injury, regulate SOD levels, affect the apoptotic 
process of cells during I/R injury, and ultimately protect cells 
from I/R injury. In the present study, we found that Rg1 had no 
significant toxic effect on 661W cells at doses below 60 µmol/L. 
Furthermore, the protection of Rg1 on 661W cells exposed to 
OGD/R was not dose-dependent. 
In conclusion, we showed that OGD/R process down-regulated 
the expression of nrf2/HO-1, whereas Rg1 delayed the I/R injury 
of 661W cells by up-regulating the expression of nrf2/HO-1 
cells from I/R injury. This study provides further molecular 
rationale for the application of ginsenoside Rg1 in ocular optic 
nerve I/R diseases such as traumatic optic nerve injury.
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