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Abstract
● AIM: To investigate the retinoprotective role of Apigenin 
(Api) against high glucose (HG)-induced human retinal 
microvascular endothelial cells (HRMECs), and to explore its 
regulatory mechanism. 
● METHODS: HRMECs were stimulated by HG for 48h to 
establish the in vitro cell model. Different concentrations 
of Api (2.5, 5, and 10 μmol/L) were applied for treatment. 
Cell counting kit-8 (CCK-8), Transwell, and tube formation 
assays were performed to examine the effects of Api on the 
viability, migration, and angiogenesis in HG-induced HRMECs. 
Vascular permeability was evaluated by Evans blue dye. 
The inflammatory cytokines and oxidative stress-related 
factors were measured using their commercial kits. Protein 
expression of nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase 4 (NOX4) and p38 mitogen-activated 
protein kinase (MAPK) was measured by Western blot.
● RESULTS: Api prevented HG-induced HRMECs viability, 
migration, angiogenesis, and vascular permeability in a 
concentration-dependent manner. Meanwhile, Api also 
concentration-dependently inhibited inflammation and 
oxidative stress in HRMECs exposed to HG. In addition, HG 
caused an elevated expression of NOX4, which was retarded 
by Api treatment. HG stimulation facilitated the activation 
of p38 MAPK signaling in HRMECs, and Api could weaken 
this activation partly via downregulating NOX4 expression. 
Furthermore, overexpression of NOX4 or activation of p38 
MAPK signaling greatly weakened the protective role of Api 
against HG-stimulated HRMECs.

● CONCLUSION: Api might exert a beneficial role in HG-
stimulated HRMECs through regulating NOX4/p38 MAPK 
pathway. 
● KEYWORDS: apigenin; retinal microvascular endothelial 
cell; glucose; NOX4; p38 MAPK
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INTRODUCTION

D iabetic retinopathy (DR) is a common microvascular 
complication of diabetes mellitus that triggers 

irreversible retinal damage. It has been widely recognized that 
DR is the leading of vision loss and preventable blindness in 
working-age adults and elderly people worldwide[1]. With the 
increasing prevalence of diabetes, the population of people 
with DR is estimated to rise to 628 million in 2045, which 
will cause great public health burdens[2]. The pathogenesis 
of DR is complicated, and multi-faceted. Oxidative stress, 
inflammatory response and advanced glycation end products 
induced by long-term hyperglycaemia can lead to retinal 
microvascular endothelial cell dysfunction and blood-retinal 
barrier breakdown, eventually contributing to the progression 
of DR[3-6]. Up to date, the main therapeutic approaches for DR, 
such as anti-vascular endothelial growth factor (VEGF) agents 
and laser photocoagulation, significantly reduce the occurrence 
of severe vision loss; however, the troublesome side effects 
and serious complications after these treatments strictly limit 
their clinical application[7]. Hence, a better understanding of 
DR pathogenesis and effective therapeutic approaches to repair 
the damaged retina and restore visual function are urgently 
required. 
Flavonoids, the largest group of naturally-occurring 
polyphenols existing in almost all plants tissues, possess 
broad biological activities in numerous mammalian systems. 
Apigenin [Api; 5,7-dihydroxy2-(4-hydroxyphenyl)-4H-1-
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benzopyran-4-one] is an edible flavonoid widely distributed 
in most vegetables and fruits, especially celery and parsley[8-9]. 
In the past decades, considerable efforts have been made 
towards unveiling the antioxidant, anti-inflammatory, anti-
hyperglycemic, anti-atherogenic and antimicrobial properties of 
Api, which has been confirmed to play a protective role against 
multiple human diseases, including cancers, Alzheimer’s 
disease, chronic inflammatory diseases, and metabolic 
diseases[10-14]. Of note, accumulating evidence demonstrated 
that Api not only exerted a protective effect in diabetes, but 
also ameliorated a series of diabetic complications, such as 
diabetic nephropathy, diabetic cardiomyopathy, and diabetes-
associated cognitive decline[15-18]. Nevertheless, there is little 
information about the role of Api during the development of 
DR, and whether Api can play a protective role in DR raises 
our interest. The previous studies identified that Api had a 
potential therapeutic efficacy in retinopathy via inhibiting 
retinal oxidative damage and enhancing retinal vascular 
barrier function[19-20]. Hence, we speculated that Api possessed 
the potential to prevent from DR. On this basis, the main 
objectives of the current study were to examine whether Api 
might exert a beneficial role in repressing the progression of 
DR and to elucidate the potential regulatory mechanism. 
MATERIALS AND METHODS
Cell Culture and Treatment  Human retinal microvascular 
endothelial cells (HRMECs, cat no. CP-H130) were purchased 
from Procell Life Science & Technology Co., Ltd. (Wuhan, 
China) and cultured in a complete culture medium (cat no. 
CM-H130; Procell Life Science & Technology Co., Ltd.) 
supplemented with 10% fetal bovine serum (FBS), 1% growth 
supplement and 1% penicillin/streptomycin mixture in a 
humidified atmosphere of 5% CO2 at 37°C. 
For treatment, HRMECs were treated with 5 mmol/L glucose 
as a normal glucose (NG) group, 30 mmol/L glucose as a high 
glucose (HG) group, and 5 mmol/L glucose plus 25 mmol/L
mannitol as an osmotic control group (MA). Meanwhile, 
HRMECs were treated with different concentrations of Api (0, 
2.5, 5, and 10 μmol/L; Sigma-Aldrich, Saint Louis, MO, USA) 
for 48h. In addition, cells were pre-treated with 50 μmol/L of 
P79350 (Invitrogen, Thermo Fisher Scientific, Waltham, MA, 
USA), a selective agonist of p38 mitogen-activated protein 
kinase (MAPK) for the investigation of regulatory mechanism.  
Cell Transfection  The pcDNA3.1-based nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) 
overexpression vector (pc-NOX4) and the scramble vector 
(pcDNA3.1) were obtained from GenePharma (Shanghai, 
China). Cells were transfected with pcDNA3.1 or pc-NOX4 
using Lipofectamine 3000 reagent (Invitrogen) in accordance 
with the manufacturer’s instructions. Post transfection 48h, 
cells were collected for analysis.  

Cell viability  The cell viability of HRMECs was assessed 
using cell counting kit-8 (CCK-8) assay. Briefly, cells were 
cultured in 96-well plates (5×103 cells/well) at 37°C overnight 
and then treated as the above grouping method. Subsequently, 
10 μL of CCK-8 solution (Beyotime, Shanghai, China) was 
added to each well and the cells were cultured at 37°C for 
another 2h. Finally, the absorbance at 450 nm of each well was 
measured using a microplate reader (Multiskan MK3, Thermo 
Fisher Scientific).
Measurement of Reactive Oxygen Species, Glutathione 
S-Transferase, and Malondialdehyde  The intracellular 
reactive oxygen species (ROS) level was measured by the 
commercial kits (Molecular Probes, Eugene, OR, USA) 
based on the turn out of the 2’,7’-dichlorofluorescin diacetate 
(DCF-DA) into highly fluorescent 2’,7’-dichlorofluorescein. 
After incubation with DCF-DA for 30min, ROS staining was 
observed under a fluorescence microscope (IX53 Olympus, 
Tokyo, Japan). For glutathione S-transferase (GSH-ST) and 
malondialdehyde (MDA) assays, after indicated treatment, the 
supernatants from HRMECs of each group were harvested, and 
the GSH-ST and MDA levels were detected adopting GSH-
ST and MDA assay kit (Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China), respectively. The absorbance was 
detected with a microplate reader (Multiskan MK3, Thermo 
Fisher Scientific) at 412 nm for GSH-ST and 532 nm for MDA.
Measurement of Inflammatory Cytokines  After indicated 
treatment, the supernatants from HRMECs of each group were 
harvested. The concentration of tumor necrosis factor (TNF)-α, 
interleukin (IL)-6 and IL-18 was measured using their 
corresponding enzyme-linked immunosorbent assay (ELISA) 
kits from R&D Systems (Minneapolis, MN, USA) in line with 
the guidelines. 
Cell Migration Assay  Cell migration assay was performed 
using a 24-well Transwell chamber (BD Biosciences, USA). 
In brief, 200 μL of HRMECs (2×105 cells/mL) were seeded in 
upper chamber of the Transwell, and 500 μL of the complete 
medium containing 10% FBS was added to the lower chamber. 
After incubation at 37°C for 48h, cells on the bottom of the 
transwell membrane were fixed with 4% formaldehyde for 
30min and then stained with 0.5% crystal violet for 20min at 
room temperature. Finally, the images of the migrated cells 
were obtained under a light microscope (IX51 Olympus, 
Tokyo, Japan).
Tube Formation Assay  HRMECs were seeded into 24-well 
plates (2×105 cells/well) which was pre-coated with 200 μL 
matrigel (BD Bioscience) per well and the plates were cultured 
at 37°C for 20h. Finally, the tube formation was captured 
under a light microscope (IX51 Olympus, Tokyo, Japan) and 
analyzed using Image J software (version 1.49; NIH, Bethesda, 
MD, USA).
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Measurement of Vascular Permeability  After indicated 
treatment, HRMECs were stained with Evans blue dye 
(Sigma-Aldrich) for 2h. After washing, the dye was extracted 
by formamide at 70°C for 18h, followed by centrifugation at 
low temperature for 30min. The optical density (OD) value of 
the supernatant was then detected at 620 nm.
Western Blot  Total protein was exacted from HRMECs 
using radio-immunoprecipitation assay buffer (Thermo Fisher 
Scientific) containing 1% protease and phosphatase inhibitors 
(Thermo Fisher Scientific). After quantification of protein 
concentration using the bicinchoninic acid assay (Pierce, 
Rockford, IL, USA), the same amount of proteins (30 μg/lane) 
was subjected to 12% sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) for separation, followed by 
transferring onto polyvinylidene fluoride membranes (Merck 
Millipore, Billerica, MA, USA). Subsequently, the membranes 
were blocked with 5% skimmed milk for 2h at room 
temperature, and then probed with primary antibodies at 4°C 
overnight and the corresponding secondary antibody for 2h at 
room temperature. The blots were visualized using enhanced 
chemiluminescence reagents (4A Biotech Co., Beijing, China). 
Statistical Analysis  Statistical analysis was carried out using 
GraphPad Prism software (version 8.0; GraphPad Software 
Inc., La Jolla, CA, USA). All experimental data were presented 
as mean±standard deviation (SD). The difference comparison 
was conducted using one-way analysis of variance (ANOVA) 
followed by Tukey’s post hoc test. In all comparisons, P<0.05 
was considered statistically significant. 
RESULTS
Api Inhibits Cell Viability of HRMECs Under the HG 
Environment  First, to examine the cytotoxicity of Api, 
HRMECs were treated with increasing concentrations of 
Api (0, 2.5, 5, and 10 μmol/L) for 48h. The results obtained 
from CCK-8 assay revealed that there was no significant 
difference among these groups, suggesting that Api (no more 
than 10 μmol/L) was non-toxic to HRMECs (Figure 1A). 
Then, HRMECs were stimulated by HG for 48h to establish 
the in vitro DR cell model, with or without treatment of Api. 
A statistically significant difference existed in cell viability 
between NG and HG groups, confirming that the cell viability 
of HRMECs was elevated in response to HG stimulation. 
Meanwhile, Api at 5 and 10 μmol/L caused an inhibition of the 
elevated cell viability after HG stimulation (Figure 1B). 
Api Prevents HG-Induced HRMECs Migration, 
Angiogenesis and Vascular Permeability  Then, the effects 
of Api on HRMECs migration and angiogenesis were 
examined. The results from Transwell assay revealed that the 
migrated cells were sharply boosted following HG stimulation. 
Api treatment remarkably lessened the migrated cells in a 
concentration-dependent manner (Figure 2A, 2B). Meanwhile, 

the tube formation assay was carried out to evaluate the effect 
of Api on angiogenesis of HRMECs in HG environment. As 
exhibited in Figure 2C, 2D, the junctions of HRMECs were 
increased following HG exposure, which were partly hindered 
by Api treatment concentration-dependently, indicating that 
Api slowed angiogenesis of HRMECs in HG environment. In 
addition, consistent with previous study that increased vascular 
permeability is a characteristic alteration in early diabetic 
microangiopathy, the vascular permeability was also elevated 
after HG stimulation, while Api could effectively retard this 
elevation (Figure 2E).  
Api Reduces HG-Induced Oxidative Stress  and 
Inflammation in HRMECs  Subsequently, we also evaluate 
the effects of Api on inflammation and oxidative stress in 
HG-induced HRMECs. As expected, HG triggered oxidative 
stress in HRMECs, evidenced by the elevated ROS generation 
and MDA activity, as well as the reduced GSH-ST activity, 
whereas Api treatment greatly restricted these alternations in a 
concentration-dependent manner (Figure 3A–3D). In addition, 
the excessive production of TNF-α, IL-6, and IL-18 stimulated 
by HG in HRMECs was also repressed by Api treatment 
(Figure 3E–3G). Therefore, Api treatment could alleviate 
oxidative stress and inflammation in HRMECs exposed to HG. 
Api Inactivates HG-Stimulated p38 MAPK Signaling via 
Targeting NOX4 in HRMECs  To explore the potential 
molecular mechanism of the protection of Api against 
DR, it was predicted from SwissTargetPrediction website 
(http://www.swisstargetprediction.ch) that NOX4 was a 
potential downstream target of Api, which was verified by 
concentration-dependent reduction of NOX4 expression 
following Api treatment in HG-induced HRMECs, despite of 
the elevated NOX4 expression in response to HG stimulation 
(Figure 4A). In addition, NOX4 overexpression as achieved 
by transfection with pc-NOX4 (Figure 4B). As NOX4 is a 
crucial upstream modulator of p38 MAPK signaling[21], the 
p38 MAPK signaling was examined. As presented in Figure 
4C, the protein expression of p-p38 was remarkably elevated 
following HG exposure, which was inhibited by Api 
(10 μmol/L) treatment; however, this inhibition was partially 
abolished when NOX4 was over-expressed. These findings 
suggested that the HG stimulation facilitated the activation of 
p38 MAPK signaling in HRMECs, and Api could weaken this 
activation partly via downregulating NOX4 expression.  
NOX4 and p38 MAPK Signaling Involved in the Protective 
Role of Api Against HG-Stimulated HRMECs  Eventually, 
to confirm the involvement of NOX4 and p38 MAPK signaling 
behind the protective role of Api, HRMECs were transfected 
with pc-NOX4 to overexpress NOX4 or pre-treated with 
the p38 MAPK signaling agonist P79350, followed by Api 
treatment and HG induction. It was observed from Figure 5A–5D 
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that the inhibitory effects of Api on the HRMECs migration 
and tube formation in HG environment were weakened by 
NOX4 overexpression or P79350 treatment. Meanwhile, the 
decreased vascular permeability caused by Api was rebounded 
by NOX4 overexpression or P79350 (Figure 5E). In addition, 
NOX4 overexpression or P79350 also restrained the protection 
of Api against oxidative stress and inflammation in HRMECs 
in the HG environment, as reflected by the elevated ROS 
generation and MDA activity and the reduced GSH-ST 

activity, as well as the upregulated production of TNF-α, IL-6, 
and IL-18 (Figure 6). 
DISCUSSION
Diabetes is a serious and common chronic metabolic 
disease, which will lead to multiple diabetes-related vascular 
complications. It is reported that approximately one-third of 
people with diabetes will develop DR, mainly accounting 
for the blindness among working-age individuals[22-23]. In 
the present study, we investigated whether Api could play 

Figure 2 Api prevents HG-induced HRMECs migration, angiogenesis, and vascular permeability  A, B: HRMECs were stimulated by HG for 

48h, with or without treatment of Api. HRMECs migration was examined using Transwell assay. C, D: The tube formation assay was carried 

out to evaluate the effect of Api on angiogenesis of HRMECs in HG environment. E: The vascular permeability was elevated by Evens blue dye. 
aP<0.001 vs NG; bP<0.01, cP<0.001 vs HG. Api: Apigenin; HRMECs: Human retinal microvascular endothelial cells; HG: High glucose; NG: Normal 

glucose; MA: Mannitol.

Figure 1 Api inhibits cell viability of HRMECs under the HG environment  A: HRMECs were treated with increasing concentrations of Api (0, 

2.5, 5, and 10 μmol/L) for 48h. Cell viability was detected using CCK-8 assay. B: HRMECs were stimulated by HG for 48h to establish the in vitro 

DR cell model, with or without treatment of Api. Cell viability was detected using CCK-8 assay. aP<0.001 vs NG; bP<0.05, cP<0.001 vs HG. Api: 

Apigenin; HRMECs: Human retinal microvascular endothelial cells; CCK-8: Cell counting kit-8; HG: High glucose; DR: Diabetic retinopathy; NG: 

Normal glucose; MA: Mannitol.
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Figure 3 Api reduces HG-induced oxidative stress and inflammation in HRMECs  A, B: HRMECs were stimulated by HG for 48h, with or 
without treatment of Api. ROS generation of each group was determined by DCF-DA method. C, D: The activity of GSH-ST and MDA was 
measured using their corresponding commercial kits, respectively. E–G: The production of inflammatory cytokines, including TNF-α, IL-6, and 
IL-18, was examined by ELISA kits. aP<0.001 vs NG; bP<0.05, cP<0.01, dP<0.001 vs HG. Api: Apigenin; HRMECs: Human retinal microvascular 
endothelial cells; HG: High glucose; NG: Normal glucose; MA: Mannitol; ROS: Reactive oxygen species; GSH-ST: Glutathione S-transferase; MDA: 
Malondialdehyde; DCF-DA: 2’,7’-Dichlorofluorescin diacetate; TNF-α: Tumor necrosis factor-α; IL-6: Interleukin-6.

Figure 4 Api inactivates HG-stimulated p38 MAPK signaling via targeting NOX4 in HRMECs  A, B: HRMECs were stimulated by HG for 48h, 
with or without treatment of Api. The protein expression of NOX4 was detected using Western blot. aP<0.001 vs NG; bP<0.001 vs HG. B: 
HRMECs were transfected with pcDNA3.1 or pc-NOX4, and the expression level of NOX4 was detected by Western blot. aP<0.001 vs pcDNA3.1. 
C: HRMECs were transfected with pc-NOX4 to overexpress NOX4, followed by Api treatment and HG induction. The expression level of p-p38 
and p38 was examined using Western blot. aP<0.001 vs NG; bP<0.001 vs HG; cP<0.01 vs HG+Api+pcDNA3.1. MAPK: Mitogen-activated protein 
kinase; Api: Apigenin; HRMECs: Human retinal microvascular endothelial cells; HG: High glucose; NG: Normal glucose; MA: Mannitol; NOX4: 
NADPH oxidase 4; pc-NOX4: pcDNA3.1-based NOX4 overexpression vector.
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a protective role in DR based on HG-induced HRMECs 
as the in vitro DR cell model, as well as the potential 
molecular mechanism. The findings from a series of cellular 
experiments confirmed that Api could ameliorate HG-
induced retinal endothelial cell dysfunction by not only 
preventing HRMECs proliferation, migration, tube formation 
and vascular permeability, but also reducing oxidative stress 
and inflammation under HG environment. In addition, the 
molecular mechanism that underlie these beneficial effects of 
Api may involve the targeted downregulation of NOX4 and 
the inactivation of p38 MAPK signaling. These novel findings 
suggest that Api may be a potential drug for curtailing the 
progression of DR.
It has been well recognized that increased vascular 
permeability and neovascularization are main characteristics 
of DR, which will lead to the loss of blood-retinal barrier and, 
consequently, irreversible vision loss or even blindness[24-26]. 
Meanwhile, hyperglycemia boosted ROS production in 
retinal micro-vessels, consequently triggering oxidative 
stress[27]. Oxidative stress has been evidenced as the main 
target in DR pathophysiology[28]. In addition, the excessive 
accumulation of ROS is a pivotal factor contributing to retinal 

endothelial cell dysfunction and inflammation processes 
under hyperglycemia[29]. Therefore, vascular permeability, 
neovascularization, oxidative stress and inflammation are 
the main research directions for discovering therapeutic 
strategies for the treatment of DR. For example, Yu et al[30] 
disclosed circ-UBAP2 as a promising therapeutic target for 
DR as knockdown of circ-UBAP2 relieved HG-induced 
oxidative stress and vascular dysfunction of HRMECs. Fang 
and Chang[31] proved the protective role of celastrol in HG-
induced in vitro DR cell model by inhibiting the proliferation, 
invasion and angiogenesis of retinal endothelial cells. It 
was demonstrated by Mei et al[32] that growth differentiation 
factor 11 (GDF11) protected against DR by alleviating retinal 
cell death, inflammatory reaction and blood-retinal barrier 
breakdown. Consistently, it was uncovered in this study 
that Api greatly relieved HG-induced HRMECs migration 
and angiogenesis, elevated vascular permeability and pro-
inflammatory cytokines production, and high ROS generation 
and oxidative stress, supporting that protective role of Api 
against DR pathophysiology. 
Next, we explored the molecular mechanism that explains the 
protective role of Api in DR. First, it was predicted that NOX4 

Figure 5 NOX4 and p38 MAPK signaling are involved in the protective role of Api against HG-stimulated HRMECs  A, B: HRMECs were transfected 

with pc-NOX4 to overexpress NOX4 or pre-treated with the p38 MAPK signaling agonist P79350, followed by Api treatment and HG induction. HRMECs 

migration was examined using Transwell assay. C, D: The tube formation assay was carried out to evaluate the effect of Api on angiogenesis of HRMECs 

in HG environment. E: The vascular permeability was elevated by Evens blue dye. aP<0.001 vs HG; bP<0.001 vs HG+Api+pcDNA3.1; cP<0.001 vs HG+Api; 
dP<0.01 vs HG+Api+pcDNA3.1. MAPK: Mitogen-activated protein kinase; Api: Apigenin; HRMECs: Human retinal microvascular endothelial cells; 

HG: High glucose; NG: Normal glucose; NOX4: NADPH oxidase 4; pc-NOX4: pcDNA3.1-based NOX4 overexpression vector.
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was a potential downstream target of Api, which was then 
verified as Api remarkably suppressed NOX4 expression in 
HG-induced HRMECs in a concentration-dependent manner. 
NOX4, one of the most well-studied isoforms of the cytosolic 
NADPH oxidase, is upregulated during hyperglycemia 
condition, and is primarily responsible for ROS generation, 
thereby contributing to the early pathogenesis of DR[33-34]. 
Inactivating the NOX4 signaling pathway or knockdown of 
NOX4 has been demonstrated to inhibit vascular permeability 
and neovascularization in retinopathy and alleviate pyroptosis 
and inflammation in DR[35-36]. NOX4 interference was also 
verified to protect visual function in an experimental model 
of retinal detachment via alleviating blood-retinal barrier 
damage[37], indicating that inhibition of NOX4 is a strategy 
for preventing from visual damage. Here, NOX4 expression 
was expected to be upregulated following HG stimulation. 

Api exerted an inhibitory effect on NOX4 expression, and 
the protection of Api against HG-induced endothelial cell 
damages was partially reversed by NOX4 overexpression, 
indicating that Api might exert its functions partly through 
downregulating NOX4 expression. 
Furthermore, it is well documented that NOX4 is a crucial 
upstream modulator of p38 MAPK signaling[21]. p38 MAPK 
signaling can be activated by numerous cellular stresses, 
such as hypoxic and oxidative stresses, and regulate multiple 
extracellularly stimulated processes. It is worthy to note that 
p38 facilitated retinal micro-angiogenesis and inflammation 
in DR, and inhibition of p38 MAPK offers a novel therapeutic 
approach to inhibiting the development of early stages of 
DR[38-39]. The results of this study support the notion that p38 
MAPK signaling was activated under HG environment, in 
agreement with the previous findings[39-40]. However, Api 

Figure 6 NOX4 and p38 MAPK signaling are involved in the protective role of Api against HG-stimulated HRMECs  A, B: HRMECs were 

transfected with pc-NOX4 to overexpress NOX4 or pre-treated with the p38 MAPK signaling agonist P79350, followed by Api treatment and HG 

induction. ROS generation of each group was determined by DCF-DA method. C, D: The activity of GSH-ST and MDA was measured using their 

corresponding commercial kits, respectively. E–G: The production of inflammatory cytokines, including TNF-α, IL-6 and IL-18, was examined 

by ELISA kits. aP<0.001 vs HG; bP<0.05, cP<0.01, dP<0.001 vs HG+Api+pcDNA3.1; eP<0.001 vs HG+Api. MAPK: Mitogen-activated protein kinase; 

Api: Apigenin; HRMECs: Human retinal microvascular endothelial cells; HG: High glucose; NOX4: NADPH oxidase 4; pc-NOX4: pcDNA3.1-

based NOX4 overexpression vector; ROS: Reactive oxygen species; GSH-ST: Glutathione S-transferase; MDA: Malondialdehyde; DCF-DA: 

2’,7’-Dichlorofluorescin diacetate; TNF-α: Tumor necrosis factor-α; IL-6: Interleukin-6. 
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caused a reduction of the activated p38 MAPK response 
to HG stimulation. P79350, the agonist of p38 MAPK, 
partially abrogated Api-mediated protection against HG-
induced microvascular dysfunction. Thus, the inactivation 
of p38 MAPK signaling caused by Api took a part of the 
responsibility for the protection of Api against DR. Given that 
NOX4 overexpression facilitated the activation of p38 MAPK 
signaling, the protective role of Api in DR might be achieved 
by regulating NOX4/p38 MAPK pathway.  
Taken together, our study indicated that Api could effectively 
alleviate HG-induced microvascular dysfunction through 
reducing vascular permeability, angiogenesis, oxidative stress 
and inflammation. In terms of mechanism, NOX4 was a target 
protein of Api, and Api might exert its protective role against 
DR through regulating NOX4/p38 MAPK pathway. Our study 
implies a potential alternative medicine for the treatment of DR.
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