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Abstract
·AIM: To identify the genetic defects in a Chinese family
with achromatopsia.

· METHODS: A 2.5 -year -old boy, who displayed
nystagmus, photophobia, and hyperopia since early
infancy, was clinically evaluated. To further confirm and
localize the causative mutations in this family, targeted
region capture and next -generation sequencing of
candidate genes, such as , , ,

, and were performed using a custom -
made capture array.

·RESULTS: Slit -lamp examination showed no specific
findings in the anterior segments. The optic discs and
maculae were normal on fundoscopy. The unaffected
family members reported no ocular complaints. Clinical
signs and symptoms were consistent with a clinical
impression of autosomal recessive achromatopsia. The
results of sequence analysis revealed two novel
missense mutations in , c.633T>A (p.D211E) and
c.1006G>T (p.V336F), with an autosomal recessive mode
of inheritance.

·CONCLUSION: Genetic analysis of a Chinese family
confirmed the clinical diagnosis of achromatopsia. Two
novel mutations were identified in , which
extended the mutation spectrum of this disorder.

·KEYWORDS: achromatopsia; genetic analysis; missense
mutation
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INTRODUCTION

A chromatopsia (ACHM), also known as rod
monochromatism, is a congenital, autosomal recessive

inherited retinal disorder with varied prevalence in different
regions [1]. Affected individuals show a loss of color
discrimination, photophobia, pendular nystagmus, and
reduced visual acuity[2]. Traditionally, ACHM was considered
to be a stationary condition. Recent studies indicate that
structural changes in the retina occur with time [3], and recent
retinal imaging data shows that a progressive degeneration
can appear[4,5].
ACHM is genetically heterogeneous. To date, mutations
located in five genes have been identified as associated with
ACHM in humans, including [cyclic
nucleotide-gated cation channel alpha-3 (MIM 600053)] [6],

[cyclic nucleotide-gated cation channel beta-3 (MIM
605080)][7,8], [guanine nucleotide-binding protein G
(t) subunit alpha-2 (MIM 139340)][9,10], [the catalytic
alpha-subunit of the cone cyclic nucleotide phosphodiesterase
(MIM 600827)] [11,12], and [the inhibitory
gamma-subunit of the cone photoreceptor PDE (MIM
601190)] [13]. All these genes encode essential components of
the cone-specific phototransduction cascade. At present,
mutations in account for 40% -50% of all ACHM
cases, representing the most common cause of this disorder.
The next most common reason is the mutations of ,
which exist in about 25% of the achromats. Mutations in

, , and are rare, and are responsible
for fewer than 2% of all cases[9,14-16].
In cone photoreceptors, cyclic nucleotide-gated (CNG)
channels are integral heterotetrameric cell membrane proteins
composed of either two A3 and two B3 subunits, or three A3
and one B3 subunit [14,17,18]. The A3 subunit is topologically
composed of six transmembrane helices (S1-S6), a pore
region between S5 and S6, a cyclic nucleotide-binding
domain (CNBD), and a C-linker between S6 and CNBD
(Figure 1) [19,20]. Previous studies have revealed 82
disease-causing mutations in the gene, the majority
of which are missense mutations, implying that CNGA3
peptides are evolutionarily conserved and its function has
little tolerance for amino acid variation[2,4-6,15,21-32].
In this study, we describe the clinical characteristics and
genetic analysis of a Chinese family, and report two novel
amino acid substitutions (D211E, V336F) in CNGA3
implicated in ACHM.
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SUBJECTS AND METHODS
Clinical Assessment and Blood Sampling The patient was
a 2.5-year-old boy presenting with pendular nystagmus,
severe photophobia, and hyperopia shortly after birth. There
was no family history of ophthalmic disease and the parents
were not affected. After a full medical and ophthalmic
history was acquired, an ophthalmological examination was
performed, including external examination, slit-lamp and
fundoscopic examination. Cross-sectional retinal images
were recorded horizontally through the fovea (transverse
width 12 mm) using optical coherence tomography (OCT)
(3D-OCT 2000, Topcon, Tokyo, Japan). The best-corrected
visual acuity (BCVA), color vision, visual field, and spectral
sensitivity were difficult to assess as the patient was too
young. Since electroretinogram (ERG) is the golden standard
for the diagnosis of ACHM, we strongly recommended the
patient to perform full-field ERG. But his parents refused to
do ERG examination under anesthetics, and preferred to do
genetic analysis to help with the diagnosis.
After informed consent was obtained, blood samples, used
for genetic analysis, were taken from the patient and his
parents followed the standard procedure to ensure his safety.
Molecular Genetic Analysis
Targeted region capture and next -generation
sequencing A custom-made capture array (NimbleGen,
Madison, WI, USA) was designed to capture the 1.5 Mb
target region corresponding to the coding exons including
10 bp flanking intron sequence of 283 retinal disease genes
(gene list not shown), which included 5 disease-causing
genes of ACHM, , , , , and

. Total genomic DNA of the proband and his parents
were extracted from peripheral blood according to the
manufacturer's standard procedure using the QIAamp DNA
Blood Mini Kit (Qiagen, Hilden, Germany). The genomic
DNA was fragmented by Covaris S2 (Massachusetts, USA)

to generate paired-end libraries (200-300 bp). The libraries
were pooled and hybridized to the custom-made capture
array for 72h at 47℃ . After hybridization, the array was
washed and eluted according to the manufacturer’s
instructions (Roche NimbleGen, Inc.). The captured library
was sequenced on Illumina HiSeq2000 Analyzers for 90
cycles per read to generate paired-end reads (following the
manufacturer's standard sequencing protocols). Image
analysis and base calling were performed using the Illumina
Pipeline to generate raw data.
Variants identification and validation To detect potential
variants of the patient, we performed filtering criteria to
generate clean reads (with a length of 90 bp) for further
analysis, and then aligned the clean reads against the human
genome reference from the NCBI database (NCBI build
37.1) using the BWA (Burrows Wheeler Aligner)
Multi-Vision software package. Single-nucleotide variants
(SNVs) and Indels were identified using SOAPsnp software
and Samtools, respectively. All SNVs and Indels were
verified using the NCBI dbSNP, HapMap project, 1000
Genome Project and the database of 100 healthy Chinese
adults from BGI to exclude common variants. The novel
candidate variations in known genes were validated
by polymerase chain reaction (PCR) and Sanger sequencing.
PCR primer sets were designed Primer6.0 and products
were sequenced using a Bigdye terminator v3.1 cycle
sequencing kit (ABI, Foster City, CA, USA) and analyzed on
an ABI 3700XL Genetic Analyzer.
RESULTS
Clinical Features Subjectively, the affected individual had a
history of nystagmus, photophobia, and hyperopia since early
infancy. He was noted to be captivated by bright lights but
behaved poorly in a bright environment, and appeared to
perform better in the dark. The latest examination at 2.5
years of age revealed an absence of fixation, presenting a
small amplitude fast pendular nystagmus. The cycloplegic
refraction was +4.50 dioptric sphere OU. Slit-lamp
examination showed no specific findings in the anterior
segments. The optic discs and maculae were normal on
fundoscopy. Meanwhile, the cross-sectional OCT images
showed neither atrophic changes nor cystoid-like lesions in
the maculae (Figure 2). The unaffected family members
reported no ocular complaints.
All in all, despite the inaccessible examinations due to patient
non-cooperation, a clinical impression of ACHM was made
based on the clinical history.
Genetic Findings Using the capture panel described in
experimental section, an average of 258 伊 depth in target
region was achieved. The 94.15% and 92.51% of design target
regions were covered by at least 1伊 and 20伊 , respectively.
All eight exons of were covered by 100%, the mean
sequence depth was approximately 361 伊 , and the similar

Figure 1 A schematic model of the CNGA3 polypeptide
Cylinders imply helical structures in the protein; S1 to S6 denote
transmembrane helices; dots represent the novel mutations located
in functionally important domains.
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Figure 2 Color fundus photographs of the posterior pole of the
affected patient A: The right eye; B: The left eye. No specific
findings are seen in the optic disks and maculae. OCT images
through the fovea (C: Temporal to nasal in the right eye; D: Nasal to
temporal in the left eye) show neither macular atrophy nor cystoid
lesions.

Figure 3 The pedigree of the family with autosomal recessive
ACHM The solid square indicates the proband who carries the two
compound heterozygous mutations, p.D211E and p.V336F. The
unaffected parents are heterozygous carriers of either the V336F
allele or the D211E allele. Accordingly, 100% concordance of
genotype and phenotype was observed.

quality data were obtained in the other four known ACHM
genes, , , , and ,
demonstrating that a sufficient data quality was achieved for
variants detection. Forty-eight variants were detected in
coding regions and adjacent intronic regions of the five
known ACHM genes, and only four variants were found in

. Thirty-nine of these variants have been reported for
frequency >0.01 in 1000 genome database, which were
considered to be common variants (data not shown). And in
the nine rare variants, six variants were all in introns of

while one variant was in intron of , which
seem not to cause disease.
Among the eight coding exons of , mutation analysis
revealed two missense variants (c.633T>A and c.1006G>T)
in a compound heterozygous state. These two nucleotide
variants, in exons 6 and 7, resulted in changes from aspartic
acid (GAT) to glutamic acid (GAA) at amino acid position
211, and from valine (GTC) to phenylalanine (TTC) at amino
acid position 336, respectively. Both of the p.D211E and the
p.V336F mutations have not been reported previously
(Figure 3). Segregation analysis was performed. The father
(I-1) was shown to be heterozygous for the mutation p.V336F
and the mother (I-2) carried the heterozygous mutation p.
D211E. The genealogical tree of this family suggested that
the disorder followed an autosomal recessive mode of
inheritance (Figure 4).
DISCUSSION
Mutations of the gene have been shown to be
responsible for both congenital ACHM and progressive cone
dystrophy [15,21,22]. Recently, Li [32] have reported
mutations in 46 Chinese families, describing an additional 26
new mutations. In our study, the clinical features of

a Chinese patient with ACHM were investigated and the two
missense mutations p.D211E and p.V336F were identified as
underlying genetic causes in this patient. Neither mutation
has been reported previously.
Recent molecular screening studies involving the
gene resulted in the identification of more than 80 different
mutations. The majority were missense mutations that altered
highly conserved amino acid residues. mutations
were mainly confined to functionally and structurally
important regions, including the six transmembrane helices
(S1-S6), the ion pore, the C-linker region, and the cGMP
binding site. In the present study, we identified the compound
heterozygous mutations p.D211E and p.V336F
located in the S2 segment and the pore region, respectively
(Figure 1). Theoretically, expression and function of the
channels need to be assessed to determine whether
the mutations have a pathogenic effect on the patient.
Regarding to the phenotype of the patient, it indicated that
the variants could be pathogenic.
In fact, D211E and V336 are phylogenetically conserved not
only in other mammalian orthologs but also in chicken
CNGA3 (Figure 5), which suggents that a slight variation
can result in loss of function. Although mutations within the
S2 segment of CNGA3 have not been reported previously, a
recent study involving a missense mutation D262N at S2 of
CNGA3 confirmed that variations in a conserved region can
lead to cone dysfunction [33]. The other mutation identified in
our study was located in the pore-forming region, a loop
between S5 and S6 responsible for ion permeation and
gating. According to previously reported results, this
mutation (V336F) might result in one or more of the following
possible consequences: 1) reduced protein expression and/or
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impaired function; 2) alteration of the ion permeation

pathway; 3) loss of interactions between subunits for gating;
4) interference of pore helix rotation during gating[28].
Vision is one of the most important sources of information,
and cone vision determines the visual quality in the light
environment. ACHM causes dysfunction and degeneration of
the cone photoreceptor, which severely influences the quality
of a patient's life. Currently, this disease is untreatable, but it
has been shown that using red contact lenses or wearing
red-tinted glasses can help to alleviate photophobia in ACHM
patients[34].
Recently, more and more studies have focused on gene
replacement therapy for retinal channelopathies, such as
ACHM [35-38]. In 2010, Michalakis [37] succeeded in the
restoration of cone function in the knockout mouse
model. In 2012, Pang [39] showed that adeno-associated
viral 5 (AAV5) vector could prevent cone photoreceptor
from degeneration and restored cone function. The
therapeutic effect lasted more than 5mo in mice with
mutations. In 2013, Komaromy [40] found that a
combination of the gene therapeutic technique with
intravitreal injection of ciliary neurotrophic factor (CNTF)
could effectively rescue cone-mediated function in older

mutant dogs. All these proof-of-concept studies
have established the foundation for future gene therapy trials
for ACHM in humans.
In conclusion, our study identified a Chinese patient with
ACHM due to two compound heterozygous
mutations (p.D211E and p.V336F). To our knowledge,

Figure 4 Sequence analysis and identification of the novel mutation in the affected Chinese family Wild-type sequence of
part of exon 6 (left panel) and exon 7 (right panel) in gene (top row) and corresponding sequence of the affected individual (the
second row), and his parents (the third and bottom rows) are shown. The arrows indicate the sites of nucleotide substitution. In the proband,
two heterozygous variations, c.633T>A and c.1006G>T, are revealed, resulted in the p.D211E and p.V336F mutations. While the parents are
obligate carriers of either of the two variations.

Figure 5 Multiple protein sequence alignment of CNGA3 in
different species Arrows indicate the mutated aspartic acid 211 (A)
and valine 336 (B) residues which are evolutionarily highly
conserved. The polypeptide sequences are NP_001289.1 CNGA3,
Homo sapiens; XP_001156943.1 CNGA3, Pan troglodytes;
XP_001101944.2 CNGA3, Macaca mulatta; NP_776704.1 CNGA3,
Bos taurus; NP_034048.1 CNGA3, Mus musculus; NP_445947.1
CNGA3, Rattus norvegicus; NP_990552.1 CNGA3, Gallus gallus.
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neither of the mutations has been reported previously,
therefore extending the mutation spectrum of this disorder.
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