Abstract:AIM: To explore the therapeutic effect and main molecular mechanisms of acteoside in a glaucoma model in DBA/2J mice. METHODS: Proteomics was used to compare the differentially expressed proteins of C57 and DBA/2J mice. After acteoside administration in DBA/2J mice, anterior segment observation, intraocular pressure (IOP) monitoring, electrophysiology examination, and hematoxylin and eosin staining were used to analyze any potential effects. Immunohistochemistry (IHC) assays were used to verify the proteomics results. Furthermore, retinal ganglion cell 5 (RGC5) cell proliferation was assessed with cell counting kit-8 (CCK-8) assays. Serta domain-containing protein 4 (Sertad4) mRNA and protein expression levels were measured by qRT-PCR and Western blot analysis, respectively. RESULTS: Proteomics analysis suggested that Sertad4 was the most significantly differentially expressed protein. Compared with the saline group, the acteoside treatment group showed decreased IOP, improved N1-P1 wave amplitudes, thicker retina, and larger numbers of cells in the ganglion cell layer (GCL). The IHC results showed that Sertad4 expression levels in DBA/2J mice treated with acteoside were significantly lower than in the saline group. Acteoside treatment could improve RGC5 cell survival and reduce the Sertad4 mRNA and protein expression levels after glutamate injury. CONCLUSION: Sertad4 is differentially expressed in DBA/2J mice. Acteoside can protect RGCs from damage, possibly through the downregulation of Sertad4, and has a potential use in glaucoma treatment.