Abstract:AIM: To analyze a series of antimicrobial peptides (AMPs) in corneal tissue from individuals with fungal keratitis (FK) during the active phase of the fungus infection and after healing. METHODS: Patients undergone lamellar keratoplasty for the treatment of severe FK or corneal scar had their corneal buttons sampled. Quantitative real-time polymerase chain reaction (PCR) was used to ascertain the gene expression of human beta-defensin (HBD)-1, -2, -3, -9, S100A7, 8, 9, and LL-37. RESULTS: All AMPs’ messenger ribonucleic acid (mRNA) expression was considerably elevated in all samples (n=12). In contrast to controls, where HBD-2, -3, and S100A7 mRNAs were expressed at very low levels, it was discovered that HBD-1, -9, S100A8, S100A9, and LL-37 were constitutively expressed in all healed samples (n=4). HBD-1, -2 -3, S100A7, and LL-37 mRNAs were significantly increased in all active FK samples (n=8). The levels of HBD-9, S100A8, and S100A9 mRNAs were moderately upregulated in all active FK samples. Subgroup comparison showed that HBD-2 was significantly increased in Fusarium keratitis samples (n=5), and LL-37 mRNAs were significantly enhanced in Aspergillus keratitis samples (n=3). Whereas there was not significantly increased of HBD-1, -3, -9, S100A7, 8, 9 mRNA in Aspergillus keratitis samples compared with Fusarium keratitis samples. CONCLUSION: AMPs expression is increased in active FK, but not all AMPs are equally expressed. HBD-2 and LL-37 expression levels are the highest, showing some specificity of AMP expression related to FK. Human AMPs, particularly HBD-2 may play a significant role in Fusarium keratitis and LL-37 might be the key player in Aspergillus keratitis.