Quantitative analysis of retinal intermediate and deep capillary plexus in patients with retinal deep vascular complex ischemia
Author:
Corresponding Author:

Su-Qin Yu. Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 20080, China. sq-yu@163.com

Fund Project:

Supported by the National Natural Science Foundation of China (No.81900911); the National Key R&D Program of China (No.2016YFC0904800; No.2019YFC0840607); the National Science and Technology Major Project of China (No.2017ZX09304010); the Interdisciplinary Program of Shanghai Jiao Tong University (No.YG2019QN66).

  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    AIM: To quantitatively analyze the retinal intermediate and deep capillary plexus (ICP and DCP) in patients with retinal deep vascular complex ischemia (RDVCI), using 3D projection artifacts removal (3D PAR) optical coherence tomography angiography (OCTA). METHODS: RDVCI patients and gender- and age-matched healthy controls were assessed and underwent OCTA examinations. The parafoveal vessel density (PFVD) of retinal deep vascular complex (DVC), ICP, and DCP were analyzed, and the percentage of reduction (PR) of PFVD was calculated. RESULTS: Twenty-four eyes in 22 RDVCI patients (20 in acute phase and 4 in chronic phase) and 24 eyes of 22 healthy subjects were enrolled as the control group. Significant reduction of PFVD in DVC, ICP, and DCP was observed in comparison with the controls (DVC: acute: 43.59%±6.58% vs 49.92%±5.49%, PR=12.69%; chronic: 43.50%±3.33% vs 51.20%±3.80%, PR=15.04%. ICP: acute: 40.28%±7.91% vs 46.97%±7.14%, PR=14.23%; chronic: 41.48%±2.87% vs 46.43%±3.29%, PR=10.66%. DCP: acute: 45.44%±8.27% vs 51.51%±9.97%, PR=11.79%; chronic: 37.78%±3.48% vs 51.73%±5.17%, PR=26.97%; all P<0.05). No significant PR difference was found among DVC, ICP, and DCP of RDVCI in acute phase (P=0.812), but significant difference in chronic phase (P=0.006, DVC vs DCP, ICP vs DCP). No significant difference in PR between acute and chronic phases in the DVC (P=0.735) or ICP (P=0.681) was found, but significant difference in the DCP (P=0.041). CONCLUSION: The PFVD of DVC, ICP, and DCP in RDVCI is significantly decreased in both acute and chronic phases. ICP impairment is stabilized from acute to chronic phase in RDVCI, whereas subsequent DCP impairment is uncovered and can be explained by ischemia-reperfusion damage.

    Reference
    1 Bonini Filho MA, Adhi M, de Carlo TE, et al. Optical coherence tomography angiography in retinal artery occlusion. Retina 2015;35(11):2339-2346.
    2 de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 2015;1(1):1-15.
    3 Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina 2015;35(11):2163-2180.
    4 Liu L, Gao SS, Bailey ST, Huang D, Li D, Jia Y. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomed Opt Express 2015;6(9):3564-3576.
    5 Zhang AQ, Zhang QQ, Wang RK. Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. Biomed Opt Express 2015;6(10):4130.
    6 Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 2014;121(7):1435-1444.
    7 Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y. Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 2016;7(3):816-828.
    8 Zhang M, Hwang TS, Dongye CL, Wilson DJ, Huang D, Jia YL. Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest Ophthalmol Vis Sci 2016;57(13):5101-5106.
    9 Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015;133(1):45.
    10 Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 2015;112(18):E2395-E2402.
    11 Rahimy E, Sarraf D. Paracentral acute middle maculopathy spectral-domain optical coherence tomography feature of deep capillary ischemia. Curr Opin Ophthalmol 2014;25(3):207-212.
    12 Yu S, Pang CE, Gong Y, Freund KB, Yannuzzi LA, Rahimy E, Lujan BJ, Tabandeh H, Cooney MJ, Sarraf D. The spectrum of superficial and deep capillary ischemia in retinal artery occlusion. Am J Ophthalmol 2015;159(1):53-63.e1.
    13 Chen X, Rahimy E, Sergott RC, et al. Spectrum of retinal vascular diseases associated with paracentral acute middle maculopathy. Am J Ophthalmol 2015;160(1):26-34.e1.
    14 Yu SQ, Wang FH, Pang CE, Yannuzzi LA, Freund KB. Multimodal imaging findings in retinal deep capillary ischemia. Retina 2014;34(4): 636-646.
    15 Nemiroff J, Kuehlewein L, Rahimy E, Tsui I, Doshi R, Gaudric A, Gorin MB, Sadda S, Sarraf D. Assessing deep retinal capillary ischemia in paracentral acute middle maculopathy by optical coherence tomography angiography. Am J Ophthalmol 2016;162: 121-132.e1.
    16 Nemiroff J, Phasukkijwatana N, Sarraf D. Optical coherence tomography angiography of deep capillary ischemia. Dev Ophthalmol 2016;56:139-145.
    17 Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M. Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 2016;56:6-12.
    18 Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, Huang D. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 2017;7:42201.
    19 Sarraf D, Rahimy E, Fawzi AA, et al. Paracentral acute middle maculopathy. JAMA Ophthalmol 2013;131(10):1275.
    20 Schmidt D. The mystery of cotton-wool spots - a review of recent and historical descriptions. Eur J Med Res 2008;13(6):231-266.
    21 Rahimy E, Sarraf D, Dollin ML, Pitcher JD, Ho AC. Paracentral acute middle maculopathy in nonischemic central retinal vein occlusion. Am J Ophthalmol 2014;158(2):372-380.e1.
    22 Varma DD, Cugati S, Lee AW, Chen CS. A review of central retinal artery occlusion: clinical presentation and management. Eye (Lond) 2013;27(6):688-697.
    23 Nakahara T, Hoshino M, Hoshino S, Mori A, Sakamoto K, Ishii K. Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Exp Eye Res 2015;135:134-145.
    24 Zheng L, Gong BD, Hatala DA, Kern TS. Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 2007;48(1):361.
    25 Kaufmann TAS, Leisser C, Gemsa J, Steinseifer U. Analysis of emboli and blood flow in the ophthalmic artery to understand retinal artery occlusion. Biomedizinische Tech 2014;59(6):471-477.
    26 Kaul S. The “no reflow” phenomenon following acute myocardial infarction: mechanisms and treatment options. J Cardiol 2014;64(2):77-85.
    27 Spaide RF, Curcio CA. Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 2017;135(3):259.
    28 Heitmar R, Safeen S. Regional differences in oxygen saturation in retinal arterioles and venules. Graefes Arch Clin Exp Ophthalmol 2012;250(10):1429-1434.
    29 Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 2001;20(2):175-208.
    30 Kowluru RA, Kowluru A, Mishra M, Kumar B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2015;48:40-61.
    31 Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 2017;60:201-218.
    32 Whitehead KJ, Smith MCP, Li DY. Arteriovenous malformations and other vascular malformation syndromes. Cold Spring Harb Perspect Med 2013;3(2):a006635.
    33 Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 2012;20(4):4710-4725.
    34 Kim DY, Fingler J, Werner JS, Schwartz DM, Fraser SE, Zawadzki RJ. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express 2011;2(6):1504-1513.
    35 Wang J, Zhang M, Hwang TS, Bailey ST, Huang D, Wilson DJ, Jia Y. Reflectance-based projection-resolved optical coherence tomography angiography. Biomed Opt Express 2017;8(3):1536-1548.
    36 Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci 2017;58(13): 5713-5722.
    37 Mahroo OAR, Hammond CJ, Williamson TH. Choice of analytic approach for eye-specific outcomes: one eye or two? Am J Ophthalmol 2012;153(4):781-782.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Xin-Xin Li, Tian-Wei Qian, Ya-Nan Lyu,/et al.Quantitative analysis of retinal intermediate and deep capillary plexus in patients with retinal deep vascular complex ischemia. Int J Ophthalmol, 2021,14(7):1025-1033

Copy
Share
Article Metrics
  • Abstract:781
  • PDF: 679
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:November 08,2020
  • Revised:February 08,2021
  • Online: May 25,2021