Abstract:AIM: To explore the effect of parthenolide on hydrogen peroxide (H2O2)-induced apoptosis in human lens epithelial (HLE) cells. METHODS: The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS: Apoptosis of HLE cells was induced by 200 μmol/L H2O2, and the viability of these cells was similar to the half maximal inhibitory concentration (IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations (6.25, 12.5, 25 and 50 μmol/L) of parthenolide along with 200 μmol/L H2O2 or only 50 μmol/L parthenolide or 200 μmol/L H2O2 for 24h. Following treatment with higher concentrations of parthenolide (50 μmol/L), fewer HLE cells underwent H2O2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB (NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase (MAPK) family], and Akt proteins in HLE cells. CONCLUSION: Parthenolide may suppress H2O2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling.