Using Markov Chains to predict the natural progression of diabetic retinopathy
Author:
Corresponding Author:

Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    AIM: To study the natural progression of diabetic retinopathy in patients with type 2 diabetes. METHODS: This was an observational study of 153 cases with type 2 diabetes from 2010 to 2013. The state of patient was noted at end of each year and transition matrices were developed to model movement between years. Patients who progressed to severe non-proliferative diabetic retinopathy (NPDR) were treated. Markov Chains and Chi-square test were used for statistical analysis. RESULTS: We modelled the transition of 153 patients from NPDR to blindness on an annual basis. At the end of year 3, we compared results from the Markov model versus actual data. The results from Chi-square test confirmed that there was statistically no significant difference (P=0.70) which provided assurance that the model was robust to estimate mean sojourn times. The key finding was that a patient entering the system in mild NPDR state is expected to stay in that state for 5y followed by 1.07y in moderate NPDR, be in the severe NPDR state for 1.33y before moving into PDR for roughly 8y. It is therefore expected that such a patient entering the model in a state of mild NPDR will enter blindness after 15.29y. CONCLUSION: Patients stay for long time periods in mild NPDR before transitioning into moderate NPDR. However, they move rapidly from moderate NPDR to proliferative diabetic retinopathy (PDR) and stay in that state for long periods before transitioning into blindness.

    Reference
    Related
    Cited by
Get Citation

Priyanka Srikanth. Using Markov Chains to predict the natural progression of diabetic retinopathy. Int J Ophthalmol, 2015,8(1):132-137

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
Publication History
  • Received:January 05,2014
  • Revised:September 26,2014
  • Adopted:September 26,2014
  • Online: February 13,2015
  • Published: