人工智能在视网膜血管参数分析中的应用与进展
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摘要
文章综述了人工智能（AI）在视网膜血管参数分析中的应用及其进展。视网膜血管参数包括血管管径、分形维数、血管弯曲度、分支夹角和血管密度等，是评估视网膜血管网络结构变化的重要指标。这些参数不仅与多种眼科疾病相关，还能反映糖尿病、阿尔茨海默病等全身性疾病的状况。文章详细探讨了AI技术在自动化识别和量化视网膜血管参数方面的优势，尤其是在提高测量效率和准确性方面的贡献，同时AI的应用使得早期检测和监测多种疾病成为可能。此外，文章还讨论了AI在视网膜血管参数分析中面临的挑战，如数据标准化和样本多样性不足等问题，并提出了未来研究的方向。通过深入分析AI在视网膜血管参数分析中的应用，文章旨在为临床诊断和疾病早期干预提供新的视角和方法，具有重要的临床意义和应用前景。
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The application and progress of artificial intelligence in retinal vascular parameter analysis
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Abstract
This review summarizes the applications and advancements of artificial intelligence (AI) in retinal vessel parameter analysis. Retinal vascular parameters, including vessel diameter, fractal dimension, vascular tortuosity, branching angles, and vessel density, are important indicators for assessing changes in the retinal vascular network structure. These parameters are not only related to various ophthalmic diseases but also reflect the conditions of systemic diseases such as diabetes and Alzheimer's disease. This article provides a detailed discussion on the advantages of AI technology in the automated identification and quantification of retinal vascular parameters, particularly in improving measurement efficiency and accuracy, and enabling the early detection and monitoring of various diseases. Additionally, the review addresses the challenges faced by AI in the analysis of retinal vascular parameters, such as data standardization and insufficient sample diversity, and proposes directions for future research. By thoroughly analyzing the application of AI in retinal vascular parameter analysis, this article aims to offer new perspectives and methods for clinical diagnosis and early intervention of diseases, holding significant clinical importance and application prospects.
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0 引言
视网膜微血管系统是人体唯一可直接观察的深层微血管系统，为研究提供了宝贵的窗口[1]。其形态变化不仅与多种眼科疾病相关，还能反映如糖尿病、阿尔茨海默病和帕金森病等多种全身性疾病的状况[2-4]。近年来，人工智能（artificial intelligence，AI）在医学领域的应用日益广泛，特别是在视网膜血管疾病的自动诊断、筛查和治疗中表现出显著优势​[5]。随着眼底成像技术和光学相干断层扫描血管造影技术的发展，结合AI的视网膜图像分析软件使得对微血管系统的无创、定量评估更加精准和高效，提升了血管参数测量的准确性和客观性，简化了临床诊断流程[6-7]。
1 视网膜血管参数概述
[bookmark: _Hlk185890832]视网膜血管参数指的是通过观察视网膜血管的形态和功能特征获取的定量指标，包括血管管径、分形维数（fractal dimension，FD）、血管弯曲度、血管分支夹角和血管密度等，这些参数反映了视网膜血管网络结构的变化，为全身疾病的研究提供了可靠的依据[8-9]。通过可视化和量化视网膜微血管系统，研究人员能够获取血管形态和功能的定量数据。AI技术在视网膜血管的自动识别和形态学量化中表现出全自动化、标准化和全面获取指标的优势，促进了视网膜血管参数在临床和基础研究中的应用[10]。尽管AI技术在视网膜血管分析中具有巨大潜力，但仍面临数据不规范和样本多样性不足等挑战，这些问题的解决将有助于提高诊断的准确性和临床应用的广泛性。
2 人工智能在视网膜血管参数中的应用
2.1 血管管径  视网膜血管管径的变化是早期血管系统损伤的敏感指标，能够反映视网膜血流、炎症、缺血和内皮功能的改变[11]。近年来，随着AI技术，尤其是深度学习算法在医疗影像领域的迅速发展，视网膜血管管径的测量已从传统的半自动模式转变为全自动化。AI技术通过对大量视网膜图像的训练，能够快速、准确地识别微小血管结构，检测肉眼难以分辨的细微变化，这使得AI在临床监测和疾病预测中成为重要工具。例如，Luo等[12]利用AI对324例远视儿童的视网膜血管直径进行自动化分析，发现高度远视儿童的血管直径大于低度和中度远视儿童，且眼轴长度与较小的血管直径显著相关（β=-0.076，P＜0.001），表明AI在儿童眼底参数检测中的高效性和可靠性。在糖尿病视网膜病变（DR）的研究中，Chen等[13]通过AI自动测量1型糖尿病（T1DM）儿童的视网膜血管参数，发现视网膜血管管径与DR显著相关（OR=0.793，P=0.044）。这两项研究均表明，AI能够有效监测儿童眼底血管的微小变化，为早期诊断提供有力支持。然而，这些研究仍存在一定局限性。Luo等[12]的研究为横断面研究，无法深入探讨因果关系；Chen等[13]的研究尽管为纵向设计，但未排除药物作为混杂因素的影响，可能影响研究结果的准确性。此外，赵露等[14]的研究进一步拓展了AI在神经系统疾病中的应用，分析73例缺血性脑卒中患者的眼底图像，发现其视网膜动脉管径显著小于对照组（t=3.232，P＜0.05），并且与脑卒中风险密切相关（OR=0.924，P＜0.01），这表明AI在识别脑血管疾病相关眼底特征方面具有重要价值，但该研究未对脑卒中进行进一步分型，限制了其对不同类型脑卒中的预警作用。Cheung等[15]通过深度学习系统（DLS）发现视网膜动脉管径缩小与认知能力下降及痴呆症风险增加相关，而Wong等[16]则验证了AI测量的视网膜动脉管径变窄与心肌梗死（MI）风险的关联性，尤其在调整了多种心血管风险因素后依然显著。这些研究一致表明，AI测量的视网膜血管参数在预测多种系统性疾病风险方面具有重要的临床意义。Lim等[17]针对慢性肾病（CKD）患者的研究证明，通过DLS测量的视网膜血管管径与新发心血管疾病显著相关，且结合肾功能数据能够显著提高心血管风险预测模型的准确性。以上研究表明，AI技术在视网膜血管管径测量中能精准识别微小变化，助力早期诊断和风险预测，尤其在DR、脑卒中和认知障碍等疾病中展现出重要价值，结合其他临床数据可提升预测准确性，但部分研究仍存在因果关系不明和混杂因素等局限。
2.2 血管分形维数  视网膜血管网络的FD由Mandelbrot和Wheeler首次提出，是衡量血管分支复杂性的重要指标。FD用于评估复杂结构在空间中的分布有效性，数值越高，表示血管网络的复杂性和分布的精细程度越高[18-19]。FD的一个显著优势在于其测量不受眼球屈光状态或视网膜图像放大因素的影响，因而具有高度的稳定性和可靠性[20]。这一特性使得FD在各种眼科和全身性疾病的研究中被广泛应用，尤其在评估血管网络结构变化与疾病进程之间关系时，FD提供了一种标准化和客观化的评价方法。多项研究已证明AI在FD测量中的有效性。例如，Xue等用AI视网膜图像分析软件EVisionAI分析了548名健康志愿者和530例甲状腺相关眼病（TAO）患者的眼底图像，发现TAO患者的FD显著高于健康志愿者，且中度和重度TAO患者的FD高于轻度患者，ROC曲线显示FD在TAO诊断中的AUC为0.904[21]。这表明AI辅助的FD测量在TAO诊断中具有高度准确性，但未测量分析周边视网膜血管的相关数据。此外，Fu等[22]研究通过全自动AI系统提取视网膜血管参数（包括FD），分析了视网膜微血管参数与新发冠心病的关联。研究纳入57 947例无冠心病病史的参与者，结果显示降低的FD与冠心病风险增加显著相关（调整HR=0.80，P=0.033），强调了FD作为冠心病独立预测因子的潜力。在认知障碍方面，Xu等通过AI技术分析3 107例参与者的眼底图像，发现较低的FD与轻度和重度认知障碍显著相关（P＜0.001，0.033），研究表明FD的下降可作为早期识别认知障碍的候选生物标志物[23]。Li等[24]利用NFN+深度学习模型在908名社区队列参与者中发现，FD与认知障碍显著相关，模型的AUC值为0.799，表明FD在认知障碍识别和预测中具有高度有效性。然而，现有研究仍面临一些争议和挑战：（1）FD与年龄的关系在不同人群中的差异尚未完全明确，尤其是不同年龄段的FD变化情况。（2）图像质量对FD的影响仍未得到充分验证，Engelmann等[25]通过深度视网膜特征近似（DART）方法对96例183眼进行FD计算，发现图像质量与FD显著相关（P＜0.001），且年龄与FD呈负相关，但在60岁以上患者中FD的变化不如预期，提示需要进一步研究图像质量和混杂因素对FD测量的影响。综上所述，AI眼底图像分析系统在量化视网膜血管参数方面具有显著优势，FD作为血管复杂性的标志，在多种全身性疾病的早期诊断和风险预测中具有重要意义。然而，现有研究仍需要解决因果关系不明确、图像质量影响等问题。未来的研究应聚焦于标准化AI模型、解决混杂因素对FD测量的干扰，并加强纵向研究验证FD在各类疾病中的诊断效能和预测准确性，从而推动其在临床中的应用。
2.3 血管弯曲度  视网膜血管弯曲度是指视网膜血管的弯曲或扭曲程度。异常的血管弯曲度变化可能是某些疾病的早期预警信号[26]。血管弯曲度的增加通常与血管壁功能障碍和血液-视网膜屏障损伤有关[27]，通过分析彩色眼底图像，可以有效评估血管弯曲度，为早期诊断和疾病监测提供重要的临床信息。多项研究已验证，视网膜血管弯曲度与心血管疾病具有显著的关联。Mordi等[28]对5 152例患者进行随访研究，使用半自动AI软件VAMPIRE分析视网膜照片，计算动脉和静脉的弯曲度、FD和直径。结果显示，静脉弯曲度的增加可独立预测主要不良心血管事件（MACE），结合其他血管参数的风险评分可显著提高心血管事件的预测准确性（AUC 0.686 vs 0.658，P＜0.001）。与此一致，Prasad等[29]利用AI技术评估视网膜血管弯曲度，提出了一种基于眼底图像的心血管疾病风险评估方法，预测准确率达到85%，强调了血管弯曲度在心血管疾病预测中的潜力。两项研究的结果一致支持了AI在心血管疾病预测中的应用价值，然而，现有研究主要集中在血管弯曲度与心血管疾病的关联性，具体弯曲度变化与不同心血管疾病亚型之间的关系仍不明确，亟需进一步研究以提高诊断的精准度。史绪晗等[30]基于AI技术分析我国北方50岁以上人群的视网膜血管参数，发现血管平均弯曲度与高血压和饮酒量呈正相关，与高脂血症呈负相关，血管平均弯曲度随着眼轴长度的增加而减小。惠梦雨等[31]通过LadderNet模型分析视网膜动静脉，发现视网膜动脉弯曲度随血压升高而增大，动脉管径则随血压升高而减小。这些研究表明，视网膜血管弯曲度与高血压等系统性疾病具有显著关联。Raffa等[32]利用半自动化软件测量中晚期早产（MLP）儿童眼底图像的血管弯曲度，结果显示，MLP儿童与对照组在全局和局部弯曲度参数上无显著差异，然而，血管弯曲度与孕周和出生体质量之间存在一定关联，提示血管结构可能受到早期生长条件的影响，尚需进一步研究以验证这一发现。与传统方法相比，Hervella等[33]通过深度神经网络提取视网膜解剖结构，提出了一种新颖的自动化视网膜血管弯曲度评估方法。该方法在准确性和解释性方面优于以往的技术，并且与临床专家的评估结果相当。这项研究为临床提供了更加精确的血管弯曲度评估技术路径，具有推动该生物标志物在眼科及全身性疾病诊断中应用的潜力。综上所述，AI眼底图像分析系统在视网膜血管弯曲度的自动化和精确测量方面表现出显著优势，有助于多种系统性疾病的早期识别和风险评估。然而，现有研究揭示了血管弯曲度与年龄及其他临床因素的关系在不同人群中有所差异，且其在不同疾病亚型中的特异性和适用性仍需进一步验证。
2.4 分支夹角  分支夹角通过计算每个分叉处两条子血管之间的初始夹角来确定。较大的分支夹角可能反映视网膜血管几何形状的异常变化[34-35]。Deng等[36]通过深度学习网络研究了新生儿早产儿视网膜病变（ROP）和家族性渗出性玻璃体视网膜病变（FEVR）的视网膜血管形态特征。研究发现，FEVR患者的分支夹角显著小于正常对照组和ROP组（分别为37.43°±5.43° vs 39.40°±5.61° vs 39.50°±5.58°，均P＜0.05），这一结果支持了视网膜血管形态在早期诊断中的重要性。然而，与ROP组相比，FEVR患者的分支夹角差异并未在所有样本中得到一致性验证，这可能与样本的异质性或不同病理机制有关，这提示不同类型视网膜病变的分支夹角变化机制仍需进一步探讨。Wu等[37]在基于3 280例参与者的横断面研究中，采用计算机辅助程序（SIVA）定量分析了视网膜血管分支夹角与青光眼的关联。研究显示，静脉分支夹角的缩小（OR=1.22,95%CI：1.00-1.48）与青光眼风险显著相关（P=0.047），提示更狭窄的分支夹角可能反映血流效率降低或内皮功能障碍。然而，动脉分支夹角与青光眼未呈现显著关联（P＞0.05）。研究进一步指出，分支夹角的变化或与青光眼相关的微血管异常存在潜在联系，但受限于横断面设计，无法明确因果关系。未来需通过纵向研究验证分支夹角作为青光眼早期生物标志物的价值，并优化AI模型以提升其在不同血管分叉模式中的分析精度。Lim等[38]通过半自动计算机辅助程序（SIVA）对2882名亚洲成年人的视网膜血管分支夹角进行定量分析，发现眼轴长度（AL）增加与近视屈光度（SE）加深均与视网膜动脉分支夹角缩小显著相关（P＜0.001），而静脉分支夹角未呈现显著变化。研究提示，轴向伸长可能导致后极部血管机械性拉伸，进而引发分支角度变窄，这与血流效率降低相关。以上研究表明，分支夹角变化与多种眼部疾病的严重程度密切相关，但不同病理类型的血管形态变化机制尚存在争议。尽管已有研究提供了重要数据，分支夹角变化的具体机制、疾病分类的精确度及AI算法的泛化能力仍需进一步探讨。
2.5 血管密度  光学相干断层扫描（optical coherence tomography,OCT）是一种非侵入性成像技术，利用部分相干光的干涉信息，生成高分辨率的生物组织横截面和三维结构图像，使其成为理想的视网膜成像工具。基于OCT的血管成像技术（optical coherence tomography angiography,OCTA）能够提供眼底微血管的高分辨率图像，支持视网膜血管结构的分层分析及定量血流信息的获取[39-40]。OCTA通过自动分割和毛细血管丛的可视化，成为评估微血管系统的创新工具，尤其在全身性疾病的评估中具有重要应用价值[41]。AI技术的引入进一步提升了OCT成像分析的效率，拓宽了患者筛查范围，并促进了临床决策的优化[42]。例如，Khalili Pour等[43]采用监督机器学习算法，结合优化遗传算法，分析OCTA血管密度图，成功区分增殖性糖尿病视网膜病变（PDR）和非增殖性糖尿病视网膜病变（NPDR）。研究结果显示，支持向量机（SVM）分类器在PDR与NPDR的分类准确率达到85%，其中深层视网膜层血管密度图的分类准确率最高，达90%。这一成果验证了AI技术在DR诊断中的有效性。Maceroni等[44]利用OCTA扫描评估面肩肱型肌营养不良症（FSHD）患者的视网膜血管变化，并用AI进行评估，发现FSHD患者的浅表和深部毛细血管丛血管密度均显著增加，且随着年龄增长，浅层毛细血管的血管密度有所下降（P=0.008）。此外，Xie等[45]对阿尔茨海默病（AD）和轻度认知障碍（MCI）患者进行研究，使用深度学习模型分割OCTA图像，研究发现，AD患者内层血管复合体（IVC）长度密度显著低于健康对照组，而MCI组则在浅层和内层血管复合体的长度密度上均低于对照组。这一结果证实了OCTA结合AI技术在AD和MCI早期诊断中的应用潜力。然而，该研究的总体样本量相对较少，限制了结果的广泛推广和应用。与传统的OCT图像处理方法相比，AI和深度学习技术的引入使OCTA图像的分析更加高效，减少了人工处理的错误，并能更精确地提取视网膜微血管几何参数。AI在OCTA图像分析中的应用，不仅帮助识别疾病的生物标志物，还提供了有价值的定量参数，支持疾病的早期诊断与治疗决策。
3 小结与展望
眼科一直处于采用AI的医学专业的最前沿，这主要得益于该领域“以图像为中心”的特点[46]。眼底图像分析作为一种无创且成本效益高的技术，提供了大规模人群筛查的可扩展解决方案，不仅能够用于眼科疾病的检测与筛查，还能有效地识别与全身疾病相关的风险，提供早期预警和干预的支持[47]。AI能够对庞大的数据集进行有效分析，开发出越来越复杂的模型，从而实现强大的数据解析能力[48]。尽管AI在眼科领域的应用取得了显著进展，但仍面临许多挑战。例如，从眼底照片测量视网膜血管参数时，缺乏统一的计算方法和标准化方案，不同方法和软件之间缺乏一致性。此外，许多AI软件对用户来说并非免费，且成本较高，限制了其在临床中的应用[6]。未来的研究应聚焦于建立更大规模、多样化的数据集，并优化AI算法，以提升其在不同人群中的适用性。跨学科合作和数据扩展将有助于深入理解视网膜血管与全身疾病的关系，推动早期发现和个性化干预。随着技术的进步和标准化的推进，AI将在眼科诊断和治疗中发挥更加重要的作用，不仅提高诊断准确性和效率，还能通过早期干预改善患者预后。这些技术的广泛应用将促进眼科与其他医学领域的跨学科合作，推动整体医疗水平的提升。
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