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Abstract

e AIM. To establish pupil diameter measurement
algorithms based on infrared images that can be used in
real-world clinical settings.

¢ METHODS : A total of 188 patients from outpatient clinic
at He Eye Specialist Shenyang Hospital from Spetember
to December 2022 were included, and 13 470 infrared pupil
images were collected for the study. All infrared images
for pupil segmentation were labeled using the Labelme
software. The computation of pupil diameter is divided
into four steps: image pre-processing, pupil identification
and localization, pupil segmentation, and diameter
calculation. Two major models are used in the computation
process: the modified YoloV3 and Deeplabv 3+ models,
which must be trained beforehand.

e RESULTS: The test dataset included 1 348 infrared pupil
images. On the test dataset, the modified YoloV3 model
had a detection rate of 99.98% and an average precision
(AP) of 0.80 for pupils. The DeeplabV3+ model achieved a
background intersection over union (10U) of 99.23%, a
pupil IOU of 93.81%, and a mean 10U of 96.52%. The pupil
diameters in the test dataset ranged from 20 to 56 pixels,
with a mean of 36.06+6.85 pixels. The absolute error in
pupil diameters between predicted and actual values
ranged from 0 to 7 pixels, with a mean absolute error
(MAE) of 1.06+0.96 pixels.

e CONCLUSION: This study successfully demonstrates a
robust infrared image-based pupil diameter measurement
algorithm, proven to be highly accurate and reliable for
clinical application.

e KEYWORDS: pupil; infrared image; algorithm; deep
learning model
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INTRODUCTION

he pupil, situated at the core of the iris, is crucial for
T regulating light entry into the eye. Its dynamic adjustment
of diameter'" | vital for visual function, is controlled by the
coordinated actions of the pupillary sphincter and dilator
muscles in response to light and other stimuli"”™.
Consequently, abnormalities in pupillary responses can reveal
important information about diverse medical conditions,
rendering precise pupil size measurement a vital diagnostic
instrument
Accurately delineating the dynamic fluctuations in pupil size
necessitates both precision and real—time tracking. The pupil
gauge remains the favored tool in clinical settings due to its
straightforward application. Yet, it falls short for continuous
and precise dynamic assessments, as it fails to visually
quantify the rates of pupil constriction or expansion

Alternative  instruments, not originally  designed for
pupillometry — such as wavefront aberrometers and corneal
topographers—can furnish more accurate measures. Wavefront
aberrometry provides static insights but lacks the capability for
ongoing monitoring of the light — adaptive pupil”™'. In
contrast, corneal topography boasts high computational
accuracy and consistency, enabling the observation of pupil
dynamics in response to illumination *""'. Nevertheless, this
method is contingent on a controlled lighting backdrop and is
ineffective for capturing pupillary responses in darkened
conditions.

Infrared imaging technology facilitates the generation of high—
quality images of the pupil""’. The predominant algorithms for
determining pupil diameter from such images typically
leverage traditional image processing techniques, lauded for
their speed, interpretability, and low computational demands.
Yet, their major drawback lies in the inadequate accuracy
when measuring pupils with non - standard geometries.
Clinically, such irregular shapes are not uncommon and
include semi — circular pupils from eyelid droop ( ptosis) ,
pinpoint pupils due to organophosphorus poisoning, and
distortions following iris surgery, among others. The advent
and evolution of artificial intelligence in recent years have
broadened its application in the field of ophthalmology,
yielding a host of significant advancements >™*'. This study
harnesses infrared imaging to obtain pupil visuals alongside
deep learning algorithms to determine pupil diameter,
ensuring precision and adherence to the real—time constraints
of clinical pupil assessments.

SUBJECTS AND METHODS

Ethical Approval This study adhered to the tenets of the
received He
Institutional Review Board approval (IRB (2022) K001.01).

All participants furnished written informed consent prior to

Declaration of Helsinki and University’s

inclusion.
Data Collection Figure 1 illustrates the setup for capturing
infrared pupil images in this study, utilizing the Eyerobo VS

(eyeROBO Co., Ltd.). This device features an external tube,
one meter in length, to ensure a constant shooting distance
and to create an adequately dark environment for capturing
images. The core components of the infrared camera system
are an infrared light source and a digital camera, as
demonstrated in Figure 2. The imaging principle involves
infrared light reflecting off the retina, creating a distinct
luminous region within the pupil. The digital camera boasts a
0.3-megapixel resolution and is equipped with a 64 MB cache
to enhance the speed and reliability of data transfer.

Participants were enrolled from the outpatient clinic at He Eye
Specialist Shenyang Hospital during the period from September
to December 2022. The collection of infrared pupil images was
carried out by two expertly trained technicians. During the
imaging process, patients maintained proximity to the device’s
eyecup, fixating on a visual target with eyes widely opened,
avoiding blinking, eye movements, or head adjustments. The
selection criteria for the images specified that each must
capture more than one half of the pupil and that the grayscale
intensity of the pupil must surpass that of the iris; images
failing to meet these standards were discarded. The final
cohort consisted of 188 individuals, yielding a total of 13 470
infrared pupil images, documenting diverse ocular conditions,
which included healthy eyes as well as those with cataracts,
glaucoma, artificial intraocular lenses, aphakia, refractive
errors, vitreous hemorrhage, diabetic retinopathy, entropion,
among others, and even cases with indeterminate diagnoses.

Mlustrated in Figure 3A, each image included both eyes, had
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Figure 1 Infrared image acquisition apparatus for pupils.
A External tube; B and C: Internal infrared camera.
Eyerobo VS Infrared Light Source

Retina
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Figure 3 Infrared image of the pupil.

A: Original image; B:
Labeled image.

dimensions of 752 by 360 pixels, and featured a resolution of
96 dpi. This extensive image collection was then systematically
segregated into three subsets for model training ( 8 484
images ) , validation (3 638 images) , and final testing (1 348
images) .

LabelMe

annotation of all infrared pupil images, as illustrated in Figure

Data Annotation software facilitated the
3B. Effective pupil labeling adheres to the following criteria:
the labeling points must be smooth, dense, and continuous;
furthermore, they must align precisely with the pupil’s
periphery. The annotation process unfolds in 3 distinct steps:
initially, an algorithm engineer designs the labeling protocol
and produces a tutorial video. This video is then disseminated
to the annotators, encompassing clinical medical interns,
vision function specialists, and ophthalmologists, who upon
review, are primed to discuss any concerns with the creators.
Subsequently, a trio of ophthalmologists rigorously examines
the labeled data, returning any inadequate examples for
These

instrumental in determining the pupil diameter, which is

refinement. meticulously annotated images are
quantified by the widest pupil horizontal span and acts as the
standard for evaluating the algorithm posited in this research.
Table 1 outlines the distribution properties of the pupil
diameters across the 13 470 infrared pupil images.

Algorithm Development Figure 4 illustrates the
methodology for calculating pupil diameter, comprising 4 key
steps: image pre — processing, locating and identifying the
pupil, segmenting the pupil, and computing the diameter. To
individually process the images of the left and right pupils,
the photograph is divided vertically down the center to create 2
equal halves, each trimmed to dimensions of 360 by 360
pixels. The bounding box deemed most reliable encapsulates

the region harboring the pupil, from which the precise center
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Figure 4 Procedures for calculating pupil diameter. A
Original image; B: Pupil localization; C. Pupil

segmentation; D Pupil diameter calculation.

is determined. Centered on this specific coordinate, a 100 by
100 — pixel area representing the pupil is extracted. This
isolated segment of the pupil image is then used to ascertain
the pupil’s maximum horizontal extent, defining its diameter.

The computational procedure requires the preliminary training
of two crucial models. An adapted YoloV3'"' is employed for
pupil detection and positioning, trained on 360 x 360 pixel
images. YoloV3—=You Only Look Once, version 3—is a state—
of — the — art, real — time object detection framework that
simultaneously identifies and categorizes objects within a
single network pass. It employs Darknet—53, a 53-layer deep
convolutional neural network architecture pre—trained on the
ImageNet dataset, enabling it to discern a broad spectrum of
features. Model modifications include the adoption of a single
output header due to the uniform pupil size, utilization of the
K-MEANS'"' clustering algorithm to determine anchor boxes
measuring 38x38, 35x27, and 45x46 pixels tailored to the
dataset’s pupil size distribution, and the retention of only the
most confident detection box per image with a single pupil.
YoloV3’s integration into our algorithm facilitates the rapid
and accurate localization of the pupil in images, a critical
feature for time—sensitive clinical applications.

The Deeplabv3 +''"" model, integrating the MobileNetV2"'®

architecture,, was utilized for pupil segmentation, trained on
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Table 1 Characteristics of the pupil diameter data (n=13 470)
Conditions Number (%) Mean diameter (XS px) Minimum diameter (px)  Maximum diameter (px)
Normal 2 998 (22.26%) 45.10+4.56" 29 56
Cataract 4 579 (33.99%) 32.77+£4.22" 19 47
Glaucoma 181(1.34%) 27.12+4.86" 16 33
Intraocular lens 531(3.94%) 35.17+4.22" 7 42
Aphakic eye 48(0.36% ) 30.31+1.62" 25 33
Refractive error 399(2.96% ) 34.71+4.10" 26 42
Vitreous hemorrhage 23(0.17%) 24.86+1.36" 22 27
Diabetic retinopathy 92(0.68%) 32.40+1.39" 29 35
Entropion 78(0.58%) 36.65+1.89" 33 41
Unknown 4 541 (33.71%) 33.43+5.25" 19 57

Normal; Without ocular disease; Unknown: With untraceable ocular diagnoses; * Reference group; " Using the normal group as a reference,

there was a statistical difference after Bonferroni correction ( P<0.01).

With untraceable
ocular diagnosis

Figure 5 Three infrared images where the pupil was not detected.

Glaucoma

100x100 pixel images. As an advancement in the Deeplab
Deeplabv3 +
which

meaningful portions and categorizing each into predefined

series, specializes in  semantic image

segmentation , involves dividing an image into
classes. It features an encoder—decoder framework with atrous
convolutions, optimizing the feature response resolution in
Deep  Convolutional ~ Neural Networks.  Furthermore,
Deeplabv3+ incorporates an atrous spatial pyramid pooling
(ASPP) module for effectively segmenting objects on various
scales and assimilating extensive contextual data. Within our
algorithm, Deeplabv3 + is employed to define the pupil’s
contours precisely, an essential step for the accurate
measurement of pupil diameter, particularly in the infrared
image domain where challenging conditions are prevalent.

To appraise conventional pupil measurement techniques, this
HoughCircle 19720]

alongside the Watershed algorithm ™" to

transform’

pupil
dimensions. The Watershed and HoughCircles utilities from

investigation harnessed the

gauge

OpenCV were instrumental in this analysis. In particular, for
the HoughCircles function, vital parameters were meticulously
of pupil
identification, namely: method = ¢v2. HOUGH _GRADIENT _
ALT, minDist=40, paraml =38, param2=0.7, minRadius =
7, and maxRadius = 31.

chosen to optimize the rate and precision

These parameters have been

Without ocular disease

established based on a statistical analysis of annotated pupil
imagery. The study truncated infrared pupil photographs to
dimensions of 100 by 100 pixels for the empirical comparison
of three distinct methods: Deeplabv3 +, HoughCircles, and
Watershed.

The development of the algorithms was carried out using
Python 3.6, complemented by libraries including OpenCV 4.5
and PyTorch 1.12.
Algorithm Evaluation To assess the efficacy of pupil
detection, localization, and segmentation, this study utilized
metrics such as the detection rate, average precision ( AP),
and intersection over union (I0U). AP, denoting the area
beneath the precision —recall curve, is a robust indicator of
detection accuracy; values nearing unity suggest superior
detection precision and recall. The IOU metric, defined as the
ratio of the overlap between the predicted result and the
ground truth to their combined area, reveals the extent of
agreement with values approaching unity signifying greater
alignment. Additionally, the study employed mean absolute
error (MAE) to measure the discrepancy in pupil diameters;
a minimized MAE corresponds to more accurate diameter
estimations.

RESULTS

The test set, comprising 1 348 pupil images, was processed in
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39 seconds, yielding a computation speed of 34.6 images per
second. The refined YoloV3 model excelled, identifying 1 345
pupils accurately, with a detection rate of 99.98% and an AP
of 0.80. Figure 5 illustrates three infrared images—one each
from cases without ocular disease, with glaucoma, and with
an indeterminate ocular diagnosis—showcasing instances where
pupil detection failed due to grey values in the pupil area
approximating those of the surrounding iris. In terms of
segmentation performance, the DeeplabV3+ model attained a
background 10U of 99.23% , a pupil 10U of 93.81%, and an
average [OU of 96.52%. Pupil diameters in the test set varied
from 20 to 56 pixels, averaging 36.06+6.85 pixels. The range
of absolute errors in estimated pupil diameters compared to
actual measurements spanned from 0 to 7 pixels, with a MAE
of 1.06+£0.96 pixels.

Measurement errors in the diameter of infrared pupil images
were stratified by disease type, with findings detailed in
Table 2. Notably, the glaucoma group demonstrated a higher
MAE relative to the cataract, artificial intraocular lens,
refractive error groups, and those without definitive ocular
diagnoses, with these variances being statistically significant.
Pupil measurements were conducted on 1 348 infrared images,
each sized at 100 by 100 pixels, utilizing three distinct
techniques: Hough Circle Transform, Watershed algorithm,
and DeeplabV3+, with the respective outcome data presented
in Table 3. Among these methods, DeeplabV3 + had the
superior performance, whereas the Watershed algorithm
yielded the least favorable results.

DISCUSSION

The Eyerobo VS was selected as the imaging apparatus for its

uniquely designed external tube, which standardizes the

Table 2 Comparison of pupil measurement errors by disease type

capture of infrared pupil images. This tube assures a uniform
dark setting, a key requirement given the pivotal influence of
ambient light on pupil size, and establishes a definitive

detection range by maintaining a fixed one —meter distance

between the subject’s eye and the infrared camera.
Consequently, this uniformity allows for reproducible
measurements across  different subjects or sequential

evaluations for the same individual. By capitalizing on the
collective strengths of various algorithms and synthesizing
them, our approach augments the accuracy and detection
efficacy of pupil diameter assessments in practical medical
settings.

The process for computing the pupil diameter entails a
structured algorithmic approach. As a first step, images
lacking a discernible pupil are excluded, considering the
myriad clinical conditions that may impede proper capture;
obstructive eyelids, patient movement, misalignment of the
subject’s eyes, or inopportune eye motion during the
procedure. Following the exclusion, the remaining images
undergo target recognition for initial pupil localization, after
which the pertinent region is resized to 100X 100 pixels to
facilitate precise delineation in later stages. Subsequently,
segmentation isolates the pupil from its background, leading to
the final measurement of the broadest pupil horizontal span.
This study’s foremost benefit lies in its ability to precisely
measure an extensive array of pupils with atypical shapes, as
depicted in Figure 6. Variations include diminutive pupils,
those partially obscured by one or both eyelids, those
presenting irregular contours, and those not fully captured.
Two factors primarily contribute to this capability: first, the

data originate from genuine clinical environments, embracing

(n=1345)

Conditions Number (%) MAE (X=£S,px) Minimum ( px) Maximum ( px)
Normal 318 (23.64%) 1.17+1.04 0 7
Cataract 456 (33.90%) 1.00+0.89" 0 4
Glaucoma 20 (1.49%) 1.80+1.43° 0 5
Intraocular lens 55 (4.09%) 0.90+1.00" 0 6
Aphakic eye 6 (0.45%) 2.00+1.26° 1 4
Refractive error 51 (3.79%) 0.82+0.71" 0 3
Vitreous hemorrhage 1 (0.07%) 1.00+0.00° 1 1
Diabetic retinopathy 7 (0.52%) 1.71+1.38° 0 3
Trichiasis 6 (0.45%) 2.00+1.26° 1 4
Unknown 425 (31.60% ) 0.99+0.89" 0 5

Normal ; Without ocular disease; Unknown: With untraceable ocular diagnosis; MAE: Mean absolute error; * Reference group; " Using the

glaucoma group as a reference, there was a statistical difference after Bonferroni correction ( P<0.01); ¢ Because these groups had smaller

samples, they were excluded from the statistical analysis.

Table 3 A comparative analysis of the performance of three algorithms (n=1 348)
Algorithms Proportion( %) Pupil 10U( %) Background 10U ( % ) Mean 10U (% ) MAE(X£S , px)
Deeplabv3+ 100.00 93.41 99.21 96.31 0.97+0.95
HoughCircle 92.67 79.26 97.30 88.28 2.37+2.41
Watershed 86.79 36.60 79.50 58.05 27.63+£25.38

Proportion: The proportion of successfully calculated pupil diameter; IOU; Intersection over union; MAE; Mean absolute error.
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A
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Figure 6 Infrared images of pupils with abnormal pupil shape.

E F
.

A Pupil that are smaller than typical ; B: Pupil obscured by the upper

eyelid; C. Pupil obscured by the upper eyelid; D: Pupils with irregular shapes; E: Pupil obscured by the upper eyelid; F. Pupil

that were not photographed intact.

a spectrum of eye diseases, which furnishes a collection of
pupils with heterogeneous forms. Second, the employment of
deep learning surpasses traditional image processing in
analyzing diverse pupil figures with improved accuracy.

The algorithm developed in this investigation surpasses
traditional pupil measurement techniques, including the
Watershed and HoughCircle detection methods, across all
evaluated metrics.  Conventionally, image processing
algorithms depend on handcrafted feature extractors tailored
for specific applications, demanding expert knowledge and
intricate adjustments, yet often lacking in adaptability and
durability ™’

variability in aspects such as lighting, image quality, and

Practical ~ imaging conditions  introduce
pupil shape, prompting frequent failures in legacy algorithms

under certain circumstances. Contrarily, deep learning
obviates the need for manual feature crafting by concurrently
assimilating all characteristics, thereby markedly streamlining
the analytical workflow and favoring an efficient end—to—end
model over convoluted traditional approaches'™ . Within the
scope of this research, the YoloV3 and Deeplabv3+ models—
established and prevalent in engineering applications — were
selected for their proven utility. Despite the availability of
advanced instance segmentation and object recognition models
like Internlmage—H"™' | ViT—Adapter' ™', Mask2Former™*’
Co - DETR"™', MoCaE'™', DyHead'” , these were not
employed in the current study. The exclusion was based on 2
primary first, the

adequately meet the clinical requirements for measuring pupil

reasons: algorithms assessed herein

size; second, the implementation framework for the selected

models exhibits greater maturity.

Despite its strengths, this study acknowledges several
limitations. Within a test set of 1 348 images, pupils in 3
cases went undetected, corresponding to subjects from the
glaucoma group, the control group, and a group without a
confirmed diagnosis. Figure 2 illustrates that these instances
feature indistinguishable grayscale values between the pupil
and adjacent iris, potentially causing the model’s detection
challenges. Moreover, measurements of glaucoma patients’
pupil diameters exhibited higher error margins across the
dataset. This may be attributed to two primary factors: the
reduced pupil diameter in glaucoma patients”™ | which
impacts measurement precision, and the underrepresentation
of glaucoma images in the dataset, yielding inadequate
training volumes for the model.

This study demonstrates the effectiveness of an automated
pupil diameter measurement algorithm using infrared imaging.
It has been validated for high accuracy, reliability, and real-
time applicability in clinical environments. Notably, the
algorithm’s robustness is proven against diverse aberrant pupil

morphologies frequently observed in clinical practice.
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