\cdot Original article \cdot

Corneal topographic changes in healthy siblings of patients with keratoconus

Mohammad Reza Besharati, Mohammad Reza Shoja, Masoud Reza Manaviat, Maryam Kheirandish, Maasome Zare Rad

Department of Ophthalmology, Shahid Sadoughi University, Yazd, Iran

Correspondence to: Maryam kheirandish. Shahid Sadoughi Hospital, Shaheed Ghandi Blvd. Safaeeie, Yazd, Iran. kheirandish. m@ gmail. com

Received:2009-11-05 Accepted:2010-01-11

Abstract

• AIM: To describe the involvement in relatives of keratoconus (KCN) patients with corneal topography map.

• METHODS: A total of 300 eyes of 150 siblings of 75 KCN patients referred to corneal clinic were studied and experienced complete slit-lamp, refraction examinations and topographic cornea maps provided by videophoto-keratography. ANOVA, Fisher exact and Chi-square tests were performed to compare the results.

• RESULTS: From 150 siblings, 56% were female and 44% were male with average age of 21 (range of 15-39) years old. KCN and suspect KCN diagnosed in 12.3% and 6.6% respectively. The central keratometry (CK) was 46.50 \pm 4.51 dioptr(D) in KCN and 45.66 \pm 1.52 (D) in suspect KCN. Inferior-superior value (I-S) was 3.51 \pm 2.50(D) in KCN and 1.56 \pm 1.22 (D) in suspect KCN. In KCN condition the oval pattern was 67.6% (n = 25) and round pattern detected was 32.4% (n = 12). In suspect KCN these patterns detected were 90% and 10% respectively. Refractive errors in KCN were -7.50 to \pm 1.25D(-1.25 \pm 1.83), in suspect KCN 0.45 to -4.2D(-0.68 \pm 0.76) and in healthy group 2.75 to -7.5D(-0.6 \pm 1.12). Astigmatism was mild in 22.7%, moderate astigmatism in 18.3% in KCN and suspect KCN

• CONCLUSION: Increase KCN condition in healthy siblings of KCN patients shows require of screening to early diagnose and cautious treatment of contact lens in these individuals.

• KEYWORDS: keratoconus;topography;siblings;suspect KCN DOI:10.3969/j.issn.1672-5123.2010.02.003

Besharati MR, Shoja MR, Manaviat MR, Kheirandish M, Rad MZ. Corneal topographic changes in healthy siblings of patients with keratoconus. *Int J Ophthalmol (Guoji Yanke Zazhi)* 2010;10(2): 212-214

INTRODUCTION

K eratoconus (KCN) is a bilateral noninflammatory corneal degeneration with well-described clinical and histopathologic features and with differential diagnosis with other noninflammatory corneal thinning disorders like keratoglobus, pellucid marginal degeneration and Terrien's marginal

degeneration. It is mostly isolated disorder with approximately incidence of 1 per 2 000 in general population^[1]. Despite the unknown etiology, pathogenesis or inheritance of KCN [13], Laboratory studies reports about role of degenerative enzymes, proteinase inhibitors, collagen genes and their regulatory products^[1] and occur ness of KCN in about 6% of relatives of KCN patients totally provide strong indications of a major role for genes in its etiology. The early KCN condition has been able to rapid diagnosis by provided videokeratography results^[1]. Similar and less severe corneal videokeratography maps of family members of patients with KCN, irregular corneal astigmatism with inferior corneal steepening. Central steepening, greater steepening of the cornea inferior to the apex, and substantial asymmetry in the central dioptric power are some of reported corneal changes which has been detected by computer-assisted corneal topography in healthy family members of patients with KCN.

This study was designed and carried out to provide and assess corneal topographic changes in healthy siblings of patients with KCN to find out early KCN variations in our region.

MATERIALS AND METHODS

Patients In a descriptive cross-sectional study, with consideration of confidence level $(1-\alpha) = 95\%$ and delicacy level (d) = 0.04, 300 eyes from 150 KCN patients siblings were estimated; so, from all of 75 KCN patients who referred to cornea department of Shaheed Rahnemon hospital, we invited 2 siblings in one year (during July 2006-2007). They were couple of sister and brother or two isosexsual ones older than 15 years old. We excluded who were using soft and RGP contact lens in three pervious weeks or impossible to topography or with inflammatory corneal thinning. For all eyes, we used snellen panel to determine uncorrected VA, corrected VA, obvious corneal blur or Manson's sign, complete slit-lamp examination and retinoscopy to discover cornea changes and scissor motion performed too. Refractive errors including myopia (defined as a spherical equivalent lesser than 0. 50DS)^[2] hyperopia (defined as spherical equivalent greater than +0.50DS)^[2], astigmatism (defined as a cylindrical error less than 0.50 diopter cylinder (DC) in any axis)^[2] in with the rule (if the axis lay within 15° on either side of the horizontal meridian) $^{\left[2\right] }$, against the rule (if the axis lay within 15° on either side of the vertical meridian) and oblique pattern (if the axis lay between 15° to 75° or between 105° to 165°)^[2] was done.

Methods Videokeratography performed to provide the topographic maps by one experienced examiner in routine technique. The

test)					n(%)
		Healthy	Suspect KCN	KCN	Total
Age(yr)	< 20	156(64.2)	11(55.0)	25(67.6)	192(64.0)
	20-29	46(18.9)	6(30.0)	8(21.6)	60(20.0)
	30-39	41(16.9)	3(15.0)	4(10.8)	48(16.0)
Total		243(100)	20(100)	37(100)	300(100)
Astigmatism	With the rule	67(57.3)	14(70.0)	20(54.1)	101(58.0)
	Against the rule	50(42.7)	3(15.0)	8(21.6)	61(35.2)
	Oblique	0(0)	3(15.0)	9(24.3)	12(6.8)
Total		117(100)	20(100)	37(100)	174(100)
Astigmatism error		126(52.9)	0(0)	0(0)	126(42.0)
Mild(<1.5D)		60(25.2)	3(15.0)	5(13.5)	68(22.7)
Moderate(1.5-3D)		40(16.8)	5(25.0)	10(27.0)	55(18.3)
Severe(>3D)		12(5.0)	12(60.0)	22(59.5)	51(17.0)
Total		238(100)	20(100)	37(100)	300(100)

 Table 1
 Age distribution and astigmatism of KCN, suspect KCN and healthy cases (Fisher exact

 (a)
 (a)

Table 2 Central keratometry and inferior-superior in healthy, KCN and suspect KCN cases ($\bar{x} \pm s$, Chi-square test)

-		
Topography pattern	Central keratometry	Inferior-superior value
Healthy	43.28 ± 1.25	-0.12 ± 8.65
Suspected KCN	45.66 ± 1.52	1.56 ± 1.22
KCN	46.50 ± 4.51	3.51 ± 2.50

criteria were central keratometry (CK) value ≥ 47 diopter and inferior-superior (I-S) value ≥ 3 diopter for each eye. KCN was defined as central thinning of the stroma, with a Fleischer's ring, Vogt's striae, or both observed by slit-lamp examination. Patients with KCN suspect were defined as those with abnormal localized steepening observed in the axial power videokeratographic map, according to the 1.5D scale (Klyce/ Wilson scale) for visual inspection^[3].

Statistical Analysis All included data were entered SPSS software version 11.5 (SPSS Inc. , Chicago , IL). Correlation of topography indices with KCN condition evaluated with Chi-square test and presented as mean \pm SD. We explored correlation of visual acuity and KCN with ANOVA test, correlation of KCN with age and severity of astigmatism with Fisher exact test and correlation of astigmatism pattern and topographic values with Chi-square test. We considered P < 0.05 significant statistically.

RESULTS

The studied population was ranged to healthy, KCN and suspect KCN groups who were with average age of 21 years old (15-39 years old). Among three hundred studied eyes, KCN diagnosed in 37 eyes (12.3%) (Male = 43.2% and female = 56.8%) and, suspect KCN in 20 eyes (6.6%) (Male = 30.0% and female = 70.0%). The most suspect KCN (n = 11, 55.0%) and KCN (n = 25, 67.5%) conditions were in age group of < 20 years old which containing of 64.0% of participated siblings (Table 1). Clinical signs presented in 62.1% (n = 23) with KCN condition (n = 37), but no evidence in anyone with suspect KCN condition. The mean of best-corrected visual acuity was less in KCN group (1.25) against suspect KCN and healthy groups (0.68, 0.60) signifi-

cantly. 198 eyes (66.0%) were myopia, 10 eyes (3.3%) were hyperopia and the reminders (n = 92, 30.1%) didn't have any refractive error.

Refractive errors in KCN group were from -7.50 to +1.25 diopter (mean = -1.25, SD = ± 1.83) where in suspect KCN were 0.45 to -4.2 diopter (mean = -0.68, SD = \pm 0.76) and in healthy group were 2.75 to -7.5 diopter (mean = -0.6, SD = ± 1.12). Astigmatism detected in all of KCN and suspect KCN cases and among 174 astigmatic eyes, mild (\leq 1.5 diopter) in 22.7%, moderate (1.5 to 3 diopter) in 18.3%. We found severe astigmatism in 59.5% and 60.0% of KCN and suspect KCN cases. The mostly astigmatism in KCN group was severe (n = 22, 59, 5%) and in healthy group was mild (25.2%, n = 60, Table 1). Axis patterns of astigmatism were with the rule pattern in 58.0%, against the rule in 35.2% and oblique pattern in 6.8%. With the rule pattern astigmatism was 54.1% in KCN and 70.0% in suspect KCN groups (it was the most astigmatism pattern in KCN and suspect KCN group). We didn't find oblique astigmatism in healthy group, but it was detected threefold in KCN group comparing suspect KCN group (Table 1). Topographic pattern of round (central steepening) and oval (asymmetrical bowtie) were provided and compared. In KCN condition the oval pattern was 67.6% (n = 25) and round pattern detected 32.4% (n = 12). In suspect KCN these patterns detected were 90.0% and 10.0% respectively.

Topographic pattern of oval from inferior steepening in KCN and suspect KCN groups was 51.4% and 70.0% respectively (P = 0.017). The mean central keratometry (CK) was 46.50 with SD = ±4.51 diopter in KCN and 45.66 with SD = ±1.52 diopter in suspect KCN (Table 2). The mean I-S value was 3.51 with SD = ±2.50 diopter in KCN and 1.56 with SD = ± 1.22 diopter in suspect KCN (Table 2). Topographic indices containing CK and I-S value were significantly high in suspect KCN and KCN groups respectively.

DISCUSSION

There is a positive family history of KCN in 6% to 8% of patients and corneal topography can help to diagnosis of KCN

and KCN suspects in first degree relatives of patients with KCN^[4,5]. In our study the most affected persons were younger than 20 years old. Also in study of Li^[6]; the clinical natural history of patients was mostly in age range of 11 to 15 years old (67.1%). These can show degenerative corneal identity of KCN which mostly occurs in young patients . In study of Pobelle-Frasson et al^[7] about KCN in older patients, only 9 patients were older than 50 years old suggesting a relatively early age onest for KCN as a collagen disorder of corneal stroma. Although we didn't find any sexual predominance in KCN presentation similar to 1984 reported dominancy of female (15.7%) versus male $(3.6\%)^{[7]}$. In a similar study by Karimian et al^[5], KCN was diagnosed in 14% of the subjects and suspect KCN in 7.3%. Levy et al [8] also reported suspect KCN in 9% of studied subjects and we found 6.6% in suspect KCN and 12.3% in KCN condition. More presentation of suspect KCN rather than KCN in topography and no presence of obvious ophthalmologic signs for clinical diagnosis of suspect KCN condition (non of our diagnosed suspect KCN had clinical signs) suggest to provide map topographies as screening plan to discover suspect KCN conditions before developed clinical signs or switching to KCN condition. In our study the high presentation of KCN condition can describe delay in diagnosis of conditions before KCN because of no specific symptom or clinical signs.

In a study by Salabert *et al*^[9], the inferior cornea was markedly</sup>steeper than the superior cornea (I-S - 0.86 +/- 0.44D) Zarnowski also showed, the inferior mid peripheral cornea was steeper than superior cornea (as quantified by an I-S value) in all of patients (71% with peripheral steeping and 29% with central steeping). Rabinowitz^[1] observed and reported central steepening and greater steepening of the cornea inferior to the apex, in KCN patient relatives too. In our study inferior steeping with the most oval topographic pattern and astigmatism detected in all of affected cases (n = 19, 51.4%) in KCN condition, 32.4% had central steeping and 51.4% had inferior steeping (I-S -3.51 +/- 2.5D) (they were higher rather than suspect KCN cases). In a prospective study Morrow showed KCN patient relatives whom appeared healthy had topography map abnormalities suggestive of early or mild KCN. These proportions of KCN condition in first degree relatives of patients with KCN may represent the incomplete expression of a gene contributing to the development of KCN. In a pedigree analysis an autosomal dominant inheritance pattern reported in 9 of the 11 families. These positive evidences of hereditary identity of KCN make videokeratography as a valuable step to accurate family pedigree analysis resulting to KCN diagnosis. Some studies like Kaya et al reported abnormal corneal topographic values despite of normal topographic pattern in first degree relatives of patients with KCN.

Acknowledgements: This manuscript provided was based on the graduating thesis titled in "Corneal topographic changes in healthy siblings of patients with keratoconus " by Maasome Zare Rad. We also appreciate kindly help of Dr. Fallahzade from Health college to perform statistical analysis.

REFERENCES

1 Rabinowitz YS. Keratoconus. *Surv Ophthalmol* 1998;42(4):297-319 2 Prema R, George R, Sathyamangalam Ve R, Hemamalini A, Baskaran M, Kumaramanickavel G, Catherine M, Vijaya L. Comparison of refractive errors and factors associated with spectacle use in a rural and urban South Indian population. *Indian J Ophthalmol* 2008;56(2):139-144

3 Kosaki R, Maeda N, Bessho K, Hori Y, Nishida K, Suzaki A, Hirohara Y, Mihashi T, Fujikado T, Tano Y. Magnitude and orientation of Zernike terms in patients with keratoconus. *Invest Ophthalmol Vis Sci* 2007;48(7):3062-3068

4 Tyynismaa H, Sistonen P, Tuupanen S, Tervo T, Dammert A, Latvala T, Alitalo T. A locus for autosomal dominant keratoconus: linkage to 16q22.3-q23.1 in Finnish families. *Invest Ophthalmol Vis Sci* 2002;43 (10):3160-3164

5 Karimian F, Aramesh S, Rabei HM, Javadi MA, Rafati N. Topographic evaluation of relatives of patients with keratoconus. *Cornea* 2008;27(8):874-878

6 Li SW, Li ZX, Shi WY, Zeng QY, Jin XM. Clinical features of 233 cases of keratoconus. *Zhonghua Yanke Zazhi* 2005;41(7):610-613

7 Pobelle-Frasson C, Velou S, Huslin V, Massicault B, Colin J. Keratoconus: what happens with older patients? *J Fr Ophtalmol* 2004;27 (7):779-782

8 Levy D, Hutchings H, Rouland JF, Guell J, Burillon C, Arné JL, Colin J, Laroche L, Montard M, Delbosc B, Aptel I, Ginisty H, Grandjean H, Malecaze F. Videokeratographic anomalies in familial keratoconus. *Ophthalmology* 2004;111(5):867-874

9 Salabert D, Cochener B, Mage F, Colin J. Keratoconus and familial topographic corneal anomalies. *J Fr Ophtalmol* 1994;17(11):646-656

10 Kaya V, Utine CA, Altunsoy M, Oral D, Yilmaz OF Evaluation of corneal topography with Orbscan II in first-degree relatives of patients with keratoconus. *Cornea* 2008;27(5):531-534

圆锥角膜患者健康同胞的角膜地形图变化

Mohammad Reza Besharati, Mohammad Reza Shoja, Masoud Reza Manaviat, Maryam kheirandish, Maasome Zare Rad (作者单位:伊朗亚兹德 Shahid Sadoughi 大学眼科)

通讯作者:Maryam kheirandish. kheirandish.m@gmail.com **摘要**

目的:描述圆锥角膜(KCN)患者亲属的受累角膜地形图。 方法:对75名 KCN 患者的150名同胞的300只眼睛在角膜诊所进行了研究,经过完整的裂隙灯,屈光检查并由角膜摄影视频图片提供角膜地形图。进行方差分析,Fisher 精确测试和卡方检验比较结果。

结果:在150个同胞中,女56%,男44%,平均年龄21(15-39)岁。诊断KCN和可疑KCN的分别为12.3%和6.6%。 KCN患者中央角膜曲率(CK)为46.50±4.51(D)而可疑 KCN患者为45.66±1.52(D)。KCN患者角膜下方与上 方平均屈光度差值(I-S)为3.51±2.50(D)而在可疑 KCN患者为1.56±1.22(D)。在KCN状态椭圆型为 67.6%(25例)而圆型为32.4%(12例)。在可疑KCN分 别为90%和10%。KCN屈光不正为-7.50至1.25(-1.25± 1.83)D,可疑KCN为0.45至4.2(-0.68±0.76)D而健 康组为2.75至-7.5(-0.6±1.12)D。KCN和可疑KCN中 22.7%为轻度散光,18.3%为中度散光。

结论:KCN 患者健康同胞中 KCN 情况增加显示出需要筛 选检查以早期诊断并在这些个体中谨慎实施屈光性角膜 手术或隐形眼镜治疗。

关键词:圆锥角膜;地形测量;同胞;可疑 KCN