Abstract:Dry eye disease(DED)refers to a condition characterized by reduced stability of the tear film or an imbalance in the microenvironment of the ocular surface, resulting from abnormalities in quality, quantity and kinetics of tear. This condition leads to various ocular discomforts and even visual impairment. The pathogenesis of DED is multifactorial and current treatment mainly focuses on symptom relief and preservation of visual function. Acupuncture has shown effectiveness in treating dry eye, although its underlying mechanism remains incompletely understood. Proteomics technology offers a comprehensive and systematic approach to studying the functions, structures and interactions of proteins. Its application in DED research can provide valuable insights into the dynamic changes in protein levels associated with different etiology or the course of DED and facilitate the identification of potential biomarkers. Furthermore, proteomics can systematically explore the regulatory mechanisms underlying acupuncture treatment for DED, providing a theoretical basis for acupuncture treatment research and contributing to the understanding of its effects at a fundamental level. This paper aims to explore the potential application of proteomics in both clinical and basic research on DED. Ultimately, it strives to offer scientific and effective strategies for the diagnosis and treatment of DED and advance our knowledge of the mechanisms underlying acupuncture therapy.