[关键词]
[摘要]
目的:本研究运用生物信息学软件,利用数据库资料,推测青光眼早期小鼠视乳头及视网膜可能的信号路径及基因生物功能模块,为研究青光眼发病机制提供新的途径。
方法:本研究的数据是从美国生物技术信息中心GEO基因表达数据库获得。利用美国昂飞公司Expression Console软件对原始的CEL数据进行标准化及对数化转换处理。利用以t检验为基础的基因表达差异显著性分析方法SAM对基因芯片数据进行显著性差异分析,分析后筛选显著性差异表达基因,采用GNRInfer软件构建了小鼠视乳头及视网膜前50个有显著差异表达基因的调控网络,同时我们利用MAS3.0分子注释系统软件及DAVID软件这两种在线分析平台中进一步富集基因信号通路。
结果:青光眼各组视乳头和视网膜及其相对应组的显著性差异基因分析表明,在青光眼早期视乳头组及视网膜组较之正常组相比视乳头组显著性差异基因数量明显增多,青光眼视乳头及视网膜网络构建显示,视乳头基因网络中主要调控节点基因包括Unc13c、Kif5a、TRPM1、PANX; 视网膜基因网络中主要调控节点基因包括POU4F1、NEFL、BC03870、CALB2。MAS在线信号通路分析显示,视乳头组织中主要的信号代谢通路包括肌萎缩侧索硬化代谢通路、神经退行性紊乱、白细胞穿内皮性迁移及前列腺癌信号通路。视网膜组织主要代谢通路包括肌萎缩侧索硬化代谢、酪氨酸代谢、黑色素生成、氮代谢、缝隙连接、白细胞穿内皮迁移。
结论:早期青光眼阶段视乳头较视网膜对眼压更为敏感,特别是Tyrp1基因在早期高眼压的表达能否作为青光眼早期生物学指标有待进一步探讨。在青光眼高眼压压力下,节点分子生物学功能显示在视乳头组织中,细胞骨架的重排、生物驱动马达动力、物质代谢及运输力均为增强; 而在视网膜组织中,最突出的表现在细胞的再生、分化及修复作用,此结果提示我们在青光眼的研究中应重视哺乳动物视网膜损伤后自身修复的研究。代谢通路富集分析显示,炎性反应在视乳头及视网膜的病理反应中均起到非常重要的作用,而在视乳头中由于其狭窄而拥挤的解剖结构在青光眼发病中存在营养代谢及物质转运障碍。
[Key word]
[Abstract]
AIM: To be one of the primary cause injury to multiple sites of ocular of glaucoma which affects over 70 million people worldwide. We applied data mining techniques, linear and the matrix operations, efficiently calculated the network and estimated the possible function of the “node” genes of the retina and optic of glaucoma, in order to provide new thought and method on the pathogenesis of glaucoma.
METHODS: The data in this study is from Gene Expression Omnibus(GEO)which belong to Nation Center for Biotechnology Information(NCBI), the quality of the raw data CEL files was processed and analyzed by the Expression software which belong to Affymetrix Inc., Santa Clare, CA, USA. Significant analysis method(SAM)which base on the T test was used to identified the significant genes. Based on GRNInfer and Gvedit soft we set up gene networks of optic and retina of mice and further more enriched analysis which based on DAVID and MAS3.0 online software were processed.
RESULTS: The analysis between the group of the optic nerve heads and retinas in different stage of glaucoma showed that the amount of significant different expressed genes in the optic never head group increased significantly comparing with the group of retina in the early stage of glaucoma, the analysis of the genes network construction show that: the node genes of optic nerve heads included Unc13c、Kif5a、TRPM1、PANX; and the node genes of retina include POU4F1, NEFL, BC03870, CALB2. Metabolic pathways enrichment analysis which based on MAS3.0 online platform show that there was mainly the amyotrophic lateral sclerosis, tyrosine metabolism, melanogenesis, Nitrogen metabolism, Gap junction, Leukocyte transendothelial migration metabolism pathway enriched out in optic nerve head; and there was mainly amyotrophic lateral sclerosis, neurodegenerative disorders, prostate cancer, leukocyte transendothelial migration metabolism pathway enriched out in retina.
CONCLUSION: By understanding bioinformatics result, it seems optic were more sensitive than the retina to high intraocular pressure, and weather high expression of TYrp1 gene can be as a sensitive diagnostic item require more evidence back up. Functional enrich analysis of node gene showed that cytoskeleton reconstructed,molecular motor and nutrients transport function improve in optic; and in retina, the most prominent finding in retina was enrichment function modules were focus on regeneration, repairing and differentiation of cells, which remind that we should reinforce research on reparation of retina of primary glaucoma. Metabolic pathways enrichment analysis show that inflammatory response plays prominent place in optic and retina of primary glaucoma, because of the optic narrow and crowed anatomic shape, nutrient metabolism and substances transfer enrichment modules play an important role in optics of primary glaucoma.
[中图分类号]
[基金项目]